
Optimizer Hub Documentation

Table of Contents
About Optimizer Hub . 1

Interaction Between Optimizer Hub and JVMs. 1

About Cloud Native Compiler . 3

JIT Optimization . 3

Falcon JIT. 4

About ReadyNow Orchestrator . 4

Key Strengths of ReadyNow Orchestrator . 5

Optimizer Hub Architecture Overview . 5

Architecture Overview. 5

Deployment Overview . 6

Optimizer Hub Release Notes . 7

Optimizer Hub 1.9.4 . 7

New Features . 7

Bug Fixes . 7

Known Issue. 8

Optimizer Hub 1.9.3 . 8

New Features . 8

Bug Fixes . 8

Known Issue. 8

Optimizer Hub 1.9.2 . 9

New Features . 9

Known Issue. 9

Optimizer Hub 1.9.1 . 9

New Features . 9

Optimizer Hub 1.9.0 . 10

New Features. 10

Bug Fixes . 11

Optimizer Hub 1.8.2 . 12

New Features. 12

Optimizer Hub 1.8.1 . 12

New Features. 12

Known Issues . 12

Optimizer Hub 1.8.0 . 12

New Features. 13

Known Issues . 13

Cloud Native Compiler 1.7.1 . 14

New Features. 14

Cloud Native Compiler 1.7.0 . 15

New Features. 15

Cloud Native Compiler 1.6.3 . 15

New Feature. 15

Cloud Native Compiler 1.6.2 . 15

New Features. 16

Upgrade . 16

Cloud Native Compiler 1.6.1 . 16

New Features. 16

Bug Fixes . 16

Known Issues . 16

Cloud Native Compiler 1.6.0 . 17

New Features. 17

Bug Fixes . 17

Known Issues . 17

Cloud Native Compiler 1.5.0 . 17

New Features. 17

Known Issues . 17

Cloud Native Compiler 1.4.0 . 18

New Features. 18

Known Issues . 18

Cloud Native Compiler 1.3.0 . 18

New Features. 18

Known Issues . 18

Cloud Native Compiler 1.2.0 . 18

New Features. 19

Cloud Native Compiler 1.1.0 . 19

New Features. 19

Known Issues . 19

Cloud Native Compiler 1.0.0 . 19

New Features. 19

Azul Platform Core Third Party Licenses . 20

Optimizer Hub Installation Instructions . 20

Installing Optimizer Hub . 20

Supported Platforms . 20

Supported Kubernetes Environments . 20

Installing Optimizer Hub on Kubernetes . 21

Optimizer Hub Helm Charts . 21

Installing Optimizer Hub. 22

Configuring Persistent Storage . 23

Enabling the Management Gateway . 25

Cleaning Up . 26

Installing Optimizer Hub on AWS Elastic Kubernetes Service 26

Provisioning on EKS . 26

Setting Up an External Load Balancer. 31

Installing Optimizer Hub on EKS . 31

Configuring AWS S3 Storage . 31

Cleaning Up . 34

Installing Optimizer Hub on Microsoft Azure . 34

Configuring Azure Blob Storage . 34

Installing Optimizer Hub on Google Cloud . 35

Configuring Storage . 35

Configuring Compile Broker. 35

Configuring Gateway . 36

Configuring Cache. 36

Installing Optimizer Hub on Minikube . 36

Installing Minikube . 37

Installing Optimizer Hub. 37

Uninstalling Optimizer Hub from Minikube . 38

Upgrading Optimizer Hub . 38

Changed Values in 1.8 . 39

Upgrade From Specific Versions . 39

Configuring Optimizer Hub . 40

Optimizer Hub Generic Defaults . 40

Database Parameters . 41

Database Schema Parameters . 41

Management Gateway Parameters. 41

Cross-Region Sync Parameters . 42

Simple Sizing Parameters . 42

SSL Parameters. 42

Storage Parameters . 42

Configuring the Active Optimizer Hub Services . 43

Install Only ReadyNow Orchestrator . 43

Disabling Cloud Native Compiler on a Full Optimizer Hub Installation 43

Enabling the Management Gateway . 44

Configuring Optimizer Hub Host and Port . 44

Determining the Optimizer Hub Endpoint. 44

Specifying a Custom Compiler Engine Upload Port . 45

Configuring gRPC Proxy . 46

Disabling Envoy in Optimizer Hub . 46

Useful links. 46

Configuring Optimizer Hub with SSL Authentication . 46

Running Azul Zulu Prime JDK Clients with SSL . 48

Configuring ReadyNow Orchestrator . 49

Duration Configuration . 50

Configuring Clean Up of Old Profile Logs. 50

Configuring Cross-Region Synchronization of Profiles. 51

ReadyNow Orchestrator Defaults . 51

Configuring Prometheus and Grafana . 55

Prometheus Configuration Instructions . 55

Grafana Configuration Instructions. 57

Sizing and Scaling your Optimizer Hub Installation . 57

Scaling Overview . 58

Configuring Capacity . 60

Configuring Autoscaling. 60

JVM Connections to Optimizer Hub. 61

Connecting a JVM to Optimizer Hub . 61

Using the Cloud Native Compiler . 62

Cloud Native Compiler JVM Options . 62

Fallback to Local JIT Compilation. 63

Logging and SSL . 64

Registering a New Compiler Engine in Cloud Native Compiler. 65

Auto-Uploading Compiler Engines. 65

Inspecting the Installed Compiler Engines. 66

Using ReadyNow Orchestrator . 66

Creating and Writing To a New Profile Name. 66

ReadyNow Orchestrator JVM Options . 67

Using a Previous Profile as the Basis of a New Profile Recording 77

Understanding ReadyNow Orchestrator Generations . 78

Configuring Generations. 79

Basic Profile Recording with Default Generations. 79

Capping Profile Log Recording and Maximum Generations 80

Priority of Generation Settings. 81

Detailed Information. 81

Optimizer Hub API . 81

ReadyNow Orchestrator Admin API . 81

Monitoring Optimizer Hub. 85

Using Prometheus and Grafana . 86

Retrieving Optimizer Hub Logs . 86

Extracting Compilation Artifacts . 87

Note About gw-proxy Metrics . 87

Using the Grafana Dashboard. 88

Overview. 88

Alerts . 89

Cloud Native Compiler . 89

ReadyNow Orchestrator . 90

Profile Synchronization. 91

Troubleshooting Optimizer Hub . 92

Client VM Troubleshooting. 92

Cloud Native Compiler Troubleshooting. 96

ReadyNow Orchestrator Troubleshooting . 96

Known Issues . 97

About Optimizer Hub
Documentation for Optimizer Hub, version 1.9.4

Optimizer Hub is a component of Azul Platform Prime that makes your Java programs

start fast and stay fast. It consists of two services:

• Cloud Native Compiler: Provides a server-side optimization solution that offloads JIT

compilation to separate and dedicated service resources, providing more processing

power to JIT compilation while freeing your client JVMs from the burden of doing JIT

compilation locally.

• ReadyNow Orchestrator: Records and serves ReadyNow profiles. This greatly

simplifies the operational use of the ReadyNow, and removes the need to configure

any local storage for writing the profile. ReadyNow Orchestrator can record multiple

profile candidates from multiple JVMs and promote the best recorded profile.

NOTE

You can run both services with the default installation, or ReadyNow

Orchestrator only, depending on your use case.

Check the Architecture Overview to understand the components within

the Optimizer Hub system.

Interaction Between Optimizer Hub and JVMs

1. ReadyNow in the JVM asks ReadyNow Orchestrator in Optimizer Hub for a profile.

2. In the JVM, ReadyNow instructs Falcon what to compile based on the profile.

3. ReadyNow in the JVM sends back a new version of the profile to ReadyNow

Orchestrator in Optimizer Hub.

4. Falcon in the JVM asks the Cloud Native Compiler in Optimizer Hub to compile the

code (optional).

5. Cloud Native Compiler in Optimizer Hub sends the compiled code back to Falcon in

the JVM (optional).

About Optimizer Hub

1

► https://www.azul.com/wp-content/uploads/AZL106-ReadyNow-Orchestrator-Video-

Interaction Between Optimizer Hub and JVMs

2

https://www.azul.com/wp-content/uploads/AZL106-ReadyNow-Orchestrator-Video-AW.mp4

AW.mp4 (video)

About Cloud Native Compiler

Cloud Native Compiler is a component of Optimizer Hub that provides a server-side

optimization solution that offloads JIT compilation to separate and dedicated service

resources, providing more processing power to JIT compilation while freeing your client

JVMs from the burden of doing JIT compilation locally.

JIT Optimization

JIT optimization provides a multitude of benefits, including the ability to use speculative

optimizations that lead to faster eventual code. However, traditional on-JVM JIT

compilers must share the JVMs local CPU resources and compete with the application

logic in using that capacity. This presents several challenges:

• Optimization limitations:

◦ The JIT compiler is limited in resources. Resulting optimizations take time to

arrive at, and benefits are limited by the practical amount of time that applications

can wait for optimization and warm-up to complete.

◦ The JIT compiler is limited in how aggressively it can afford to optimize code. The

resulting optimizations are not as fast as they could be if the optimizer had more

resources available.

• Application performance limitations during warm-up:

◦ Optimization takes time to complete, and application code runs significantly

slower and less efficiently until the JIT compilers optimize it.

◦ JIT compilation work competes with the application for resources. Not all CPU

and memory resources are devoted to application threads.

• Resource allocation and utilization:

◦ Resources (CPU and memory capacity) used for JIT optimization are only needed

and utilized during warm-up, which is a fraction of the overall lifetime of each Java

process. Instances must reserve (and customers pay for) these under-utilized

About Cloud Native Compiler

3

https://www.azul.com/wp-content/uploads/AZL106-ReadyNow-Orchestrator-Video-AW.mp4

resources for the duration of the run of each application instance.

Falcon JIT

Azul Zulu Prime Builds of OpenJDK replace OpenJDK’s C2 JIT compiler with the Falcon

JIT compiler. The Falcon JIT compiler can run different levels of optimizations, and its

upper tier of optimizations produces optimized code that can run significantly faster

than code produced by the OpenJDK C2 compiler.

Using more aggressive optimization levels requires more resources, and when using

JVM-local JIT compilers for optimization, resource tradeoffs can often lead to a choice

of lowering optimization levels in favor of improved warmup times. Cloud Native

Compiler eliminates these tradeoffs by removing JIT compilation work from individual

JVMs, and shifting the work of the Falcon JIT compiler to a separate shared service.

This shift of work and associated resources allows the Cloud Native Compiler to apply

even the most aggressive Falcon JIT optimization levels without disrupting individual

JVM behavior. The Cloud Native Compiler can bring to bear practically unlimited Falcon

JIT compilation resources when a JVM needs them, and later scale those resources

down when they are unused and unneeded. This results in JVMs that can consistently

serve higher amounts of traffic in smaller footprint.

About ReadyNow Orchestrator

ReadyNow Orchestrator is a component of Optimizer Hub that records and serves

ReadyNow profiles. This greatly simplifies the operational use of ReadyNow when using

in large fleets of containerized environments.

• Centralized Profile Storage: You can configure your runtimes, using JVM command-

line parameters, to use ReadyNow Orchestrator for profile recording. ReadyNow

Orchestrator then records profiles from a meaningful subset of your JVMs, saving

your profiles either on Optimizer Hub’s built-in storage or on your S3-like object

storage.

• Profile Training and Optimization: ReadyNow Orchestrator also takes care of

recording multiple training generations of your profile to produce the best possible

About ReadyNow Orchestrator

4

optimization profile. ReadyNow Orchestrator then picks the best profile out of all the

possible candidates and streams it to any new JVM that is configured to request that

profile.

• Providing Profiles to JVMs: ReadyNow Orchestrator automatically serves the best

profile to newly started JVMs.

Key Strengths of ReadyNow Orchestrator

• No change to your deployment profile to manually record and distribute your

ReadyNow profiles. Everything is configured with a few JVM command-line

parameters.

• ReadyNow Orchestrator monitors your entire fleed of JVMs and picks the best

optimization profile rather than just using the profile produced by one JVM.

• Easy streaming of profiles into and out of containers, removing the need to configure

persistent storage or bake profiles into images each time you build a new image.

Optimizer Hub Architecture Overview

Optimizer Hub is shipped as a Helm chart and a set of docker images to be deployed

into a Kubernetes cluster. The Helm chart deploys different components based on the

use case.

Architecture Overview

Full Installation

In a full installation, all Optimizer Hub components are available and gateway, compile-

broker, and cache are scaled when needed.

The Management Gateway component is optional, as it depends on your use case. See

management-gateway-parameters for more info.

ReadyNow Orchestrator Only

When only ReadyNow Orchestrator is needed, a reduced set of the Optimizer Hub

components is deployed in the Kubernetes cluster.

Optimizer Hub Architecture Overview

5

Deployment Overview

With the default AWS setup (values-aws.yaml), the setup is divided into three node

types (four if you also want to use the optional monitoring stack). Each node has a

role label used to set the affinity for the nodes. If you set up your cluster on AWS EKS

using the Azul-provided "cluster config file", nodes are created with these labels.

NOTE

Make sure that the instances on which you run your Optimizer Hub on

have enough CPU to handle your requests. For example, for AWS

m5.2xlarge instances can be used, and on Google Cloud Platform c2-

standard-8 instances.

The nodes in a Optimizer Hub instance are as follows:

• Compile Broker - Performs JIT compilations.

◦ AWS node type: role=opthubserver

◦ System Requirements: CPU 8, RAM 32GB, HDD 100GB

• Cache - Stores information about the JVM that the compiler needs to perform

compilations.

◦ AWS node type: role=opthubcache

◦ System Requirements: CPU 8, RAM 32GB, HDD 100GB

◦ There is one pod per Cache node. To scale up, create more replicas.

• Infrastructure - Provides supporting functionality.

◦ AWS node type: role=opthubinfra

◦ System Requirements: CPU 8, RAM 32GB, HDD 100GB. Make sure the disk

connection is fast (use SSD) and that the storage volume is persistent between

runs.

◦ The pods included in this node are:

▪ db

Optimizer Hub Architecture Overview

6

▪ gateway

▪ storage

• Infrastructure - Non-Optimizer Hub supporting functionality, such as monitoring.

◦ AWS node type: role=infra

◦ System Requirements: CPU 8, RAM 32GB, HDD 100GB.

◦ Pods included in this node:

▪ grafana

▪ prometheus

Optimizer Hub Release Notes

Optimizer Hub 1.9.4

Release Date: September 16, 2024

New Features

• Includes bug fixes for Optimizer Hub 1.9.3.

• When using Optimizer Hub with AWS, you can now use an K8S ServiceAccount for S3

permissions. For more info, check out the documentation at service-accounts.

• Profile download errors, caused by any reason, are now reflected in metrics and

visible in the Grafana dashboard.

Bug Fixes

• Improved stability of the readiness probes for the Optimizer Hub Components.

• The limit of incoming connections for single instances of the gateway (Envoy proxy)

is increased from 1024 to 3072.

• You can now configure the AWS region of S3 with the Helm value

storage.s3.region .

Optimizer Hub Release Notes

7

• Implemented stricter data consistency validation during the upload of RNO profiles to

prevent BlobNotFound errors later.

Known Issue

• Old Prime JVMs (pre-23.08), using an earlier protocol version, can send profile

chunks in an incorrect order. This can lead to some chunks getting lost, e.g., due to

reconnections.

• With newer Prime JVMs, using the latest protocol, this same issue has been noticed

very rarely, and research is ongoing.

Optimizer Hub 1.9.3

Release Date: August 12, 2024

New Features

• Includes bug fixes for Optimizer Hub 1.9.2.

• Because of configuration changes, --set version is no longer supported during

installation using Helm.

• You can now also specify Service labels, as described in the installing-optimizer-hub

Grafana Dashboard Update

A new version of the Grafana dashboard is included in opthub-install.zip

Bug Fixes

• Improved cleanup policy for profiles written with

continueRecordingOnPromotion to avoid profiles to grow too much.

• Fixed a bug where MariaDB deployed with an empty password, potentially allowing

unauthorized root connections. MariaDB is now deployed with a randomly set

password.

Known Issue

• In some configurations with cross-region syncing, the sync task can get stuck

Optimizer Hub 1.9.3

8

https://cdn.azul.com/optimizer_hub/1.9.3/opthub-install-1.9.3.zip

because of incorrect configurations.

Optimizer Hub 1.9.2

Release Date: April 30, 2024

New Features

API improvements

The API endpoint /rno/names is extended with:

• Extra flag cncEnabled in the returned result, indicating that the creator of a profile

used or didn’t use CNC.

• Optional request filter to define a date range.

See api-methods for more info.

Grafana Dashboard Update

A new version of the Grafana dashboard is included in opthub-install.zip

Known Issue

Profile Sync Running Indefinitely

The profile synchronization task may hang indefinitely if it is erroneously configured

with an gRPC endpoint URL, instead of an HTTP endpoint URL in

synchronization.peers . Please review your configuration in case you encounter

such a hang.

Optimizer Hub 1.9.1

Release Date: April 12, 2024

New Features

Grafana Dashboard Update

A new version of the Grafana dashboard is included in opthub-install.zip

Optimizer Hub 1.9.2

9

https://cdn.azul.com/optimizer_hub/1.9.2/opthub-install.zip
https://cdn.azul.com/optimizer_hub/1.9.1/opthub-install.zip

Configurable Minimal Client Version

Optimizer Hub can now be configured to only allow clients with a specific minimal

version of Azul Zing Builds of OpenJDK to connect to and use Optimizer Hub. By default,

all versions are allowed. To limit, for example, to 24.02.1+, add the following setting to

your values-override.yaml :

compilations:
 minVmVersionForCNCCompilation: "24.2.1.0"

Increased Number of Concurrent Recordings

The default value of

readyNowOrchestrator.producers.maxConcurrentRecordings has been

increased from 5 to 10, ensuring that enough long-lived producers are detected over

short-lived ones.

Continuous Recording

With the new flag

readyNowOrchestrator.producers.continueRecordingOnPromotion , you

can define if profiles must still be recorded after the maxGeneration has been reached.

You can use this flag for debugging purposes. See readynow-orchestrator-defaults for

more info.

Optimizer Hub 1.9.0

Release Date: February 1, 2024

New Features

Cross-Region Synchronization of ReadyNow Orchestrator Profiles

A new feature in ReadyNow Orchestrator allows you to synchronize profile names

between Optimizer Hub instances in different regions so that each instance contains at

least one promoted profile for each profile name.

See cross-region-sync-parameters for configuration options.

Optimizer Hub 1.9.0

10

Database Changes

Optimizer Hub 1.9 includes an update to the Code Cache database schema. After

upgrading, Optimizer Hub dumps old Code Cache data and recreates it the next time

you run your application.

New Location of REST APIs and ReadyNow Profile Cleaner

The REST APIs and ReadyNow Profile Cleaner moved to the new Management Gateway

component, and the APIs are now exposed on a different address. The Management

Gateway is disabled by default, see management-gateway-parameters as this

component is not required in all use-cases.

Prioritization of Profile Generations

ReadyNow Orchestrator allows you to set different minimum size and recording

durations for different generations of your profiles. Often you want to promote the first

generation of your profile as quickly as possible so new JVMs are not starting with

nothing, but you want your second generation to record for a longer time before

promotion, so it is more complete.

New configuration settings: minProfileSize , minProfileDuration ,

minProfileSizePerGeneration , and minProfileDurationPerGeneration .

Check readynow-orchestrator-defaults for more info.

Grafana Dashboard

The Grafana Dashboard has been updated with more information for greater visibility

into Optimizer Hub performance.

Support for Zing Running on ARM

Optimizer Hub now supports connections from Zing JVMs running on both x86 and

ARM 64-bit machines. Optimizer Hub itself still needs to run on x86 only.

Bug Fixes

The message "Error occurred while executing task for trigger IntervalTrigger" may be

seen during initialization. This resolves automatically after some time and works as

Optimizer Hub 1.9.0

11

expected.

Optimizer Hub 1.8.2

Release Date: December 19, 2023

New Features

• Fixes an issue in 1.8.1 where the cache component is not able to scale up.

• Fixes an issue that caused unexpected HTTP/1.x requests for GET /q/metrics to

be reported in the logging.

Optimizer Hub 1.8.1

Release Date: December 6, 2023

New Features

Includes bug fixes for Optimizer Hub 1.8.0.

Known Issues

The message "Error occurred while executing task for trigger IntervalTrigger" may be

seen during initialization. This resolves automatically after some time and work as

expected.

Optimizer Hub 1.8.0

Release Date: September 12, 2023

As Cloud Native Compiler expands its scope to offer more functionality than just

offloading compilations, it is time to rebrand the offering to better reflect what it does.

Starting with release 1.8, we are using the following naming:

• Optimizer Hub (was Cloud Native Compiler) - The name of the overall component

that you install on your Kubernetes cluster.

◦ Cloud Native Compiler (was Compiler Service) - The feature that performs the

compilation on Optimizer Hub.

Optimizer Hub 1.8.2

12

◦ ReadyNow Orchestrator (was Profile Log Service) - The feature that records and

serves ReadyNow profiles to JVMs.

In Optimizer Hub 1.8, all major artifacts and command line switches use the updated

branding. This includes, but is not limited to:

• Command-line JVM options to configure Cloud Native Compiler and readynow-

orchestrator-jvm-options.

• Helm repository locations, names, and parameter names:

github.com/AzulSystems/opthub-helm-charts.

• REST API URLs.

If you are using release 1.7 and earlier, all of the previous spellings of artifacts still work.

Additionally, all of the pre-1.8 command-line arguments continue to work for a period of

one year from the release of 1.8.

New Features

• Monitoring with Prometheus and Grafana is no longer included in the Optimizer Hub

Helm charts, but must be configured separately as described on Monitoring

Optimizer Hub.

• In the past, each release was bundled with the most likely JVM compiler engine. This

is no longer the cause, resulting in smaller images.

• Session rebalancing has been improved with an (optional) Envoy proxy, or any other

gRPC-aware load balancer/ingress in your Kubernetes cluster. More information can

be found on Configuring gRPC Proxy.

• Documentation has been extended with installation instructions for Google Cloud.

Known Issues

Fixed Ports for gRPC

The helm chart values contain the keys gateway.service.httpEndpoint.port

and gateway.service.grpc.port to change the default ports 50051 and 8080. But

Optimizer Hub 1.8.0

13

https://github.com/AzulSystems/opthub-helm-charts
https://www.envoyproxy.io/

these values are hardcoded for the gRPC Envoy proxy, at this moment, and cannot be

changed with the mentioned helm chart keys.

Cloud Native Compiler 1.7.1

Release Date: June 30, 2023

New Features

• Profile Log Service now stores profile metadata in the blob storage. This means that

you can use AWS S3 or Azure Blob Storage to persist profile metadata and no longer

need to back up the database pod with persistent storage. This change also means

that when you upgrade from any release prior to 1.7.1 your previously collected

profiles are no longer available.

◦ Because of this change, the db component (MariaDB) is no longer needed when

running CNC in Profile Log Service-only mode.

• Profile Log service automatically cleans-up unused profile names when not

requested for a defined time. You can configure the duration with

profileLogService.cleaner.keepUnrequestedProfileNamesFor . See

readynow-orchestrator-defaults for more configuration information.

• New version of the Grafana monitoring dashboard with additional charts, and

updates related to changes in the metrics reported by CNC components.

Cloud Native Compiler 1.7.1

14

• You can define the profile log name with a Java property specified in the command

line, in the format %prop={PROPERTY}% . For more info, see substitution-macros.

• Improved setup for Profile Log Service-only deployment.

• CNC can automatically recover from DB pod restarts with loss of schema. To enable

this feature, set the following value in values-override.yaml :

dbschema.auto-recreate.enabled=true

• The hostPort attribute is no longer required and included for the storage pod.

Cloud Native Compiler 1.7.0

Release Date: May 3, 2023

New Features

• Improved performance of autoscaling for the Compiler Service.

• Usability improvements to the Profile Log Service Admin REST API.

• Native blob storage on Azure and AWS. Extra documentation is provided on:

◦ configuring-aws-s3-storage

◦ configuring-azure-blob-storage

• Added documentation of the CNC API.

Cloud Native Compiler 1.6.3

Release Date: May 24, 2023

New Feature

Fix to prevent the storage pod from crashing with persistent volume enabled on CNC

1.6.2.

Cloud Native Compiler 1.6.2

Release Date: April 27, 2023

Cloud Native Compiler 1.7.0

15

New Features

• The CNC helm charts now use full names for the Docker images to prevent issues in

environments where a Docker Hub mirror is used.

• CNC pods can now be run as non-root user. The Docker images have a non-root user

and the Helm chart is instructing Kubernetes to use this non-root user for CNC pods.

Upgrade

Follow the steps described on "Upgrading Cloud Native Compiler".

Cloud Native Compiler 1.6.1

Release Date: March 1, 2023

New Features

• To avoid restarts of the Gateway pod when a large number of clients try to write

profile logs at the same time, a default limit has been configured.

• Upgrade from version 1.6.0 can be done with a helm upgrade, as described on

Upgrading Cloud Native Compiler.

Bug Fixes

• Gateway pod gets restarted when large number of clients try to write profile

simultaneously.

Known Issues

• JVMs released before CNC 1.6.1 use HTTP for uploads of the compiler engine. Since

version 1.6.1, gRPC is used and the HTTP port is disabled by default in values.yaml.

Because of this, these JVMs are not able to upload their appropriate compiler engine

to CNC.

When a CNC version prior to 1.6.1 already has been used and upgraded, the older

JVMs keep working with CNC, because the upload is not needed anymore.

• The first attempt to download a previously existing profile, after CNC upgrade to

Cloud Native Compiler 1.6.1

16

1.6.1 can fail with a timeout.

Cloud Native Compiler 1.6.0

Release Date: January 30, 2023

New Features

• Cloud Native Compiler has a new Profile Log Service. This service allows you to read

and write ReadyNow profile logs to Cloud Native Compiler. This simplifies getting

profile logs in and out of containers and other environments without persistent

storage. For more information on Profile Log Service configuration, see "Using the

Profile Log Service".

• Introduced ReadyNow-only deployment to helm charts.

Bug Fixes

• Multiple APIs failed with empty response.

• Cache requests latency increased manifold resulting in an increase in wait time and

overall compilation duration.

Known Issues

• In case of heavy applications, if you see anomalies in TTCOB, the problem can be

resolved by increasing the number of cache pods. For more info, see

cloud_native_compiler_troubleshooting.

Cloud Native Compiler 1.5.0

Release Date: October 31, 2022

New Features

• Compiler Cache on by default.

• New Time to Clear Optimization Backlog metric in Grafana dashboard.

Known Issues

Cloud Native Compiler 1.6.0

17

• Multiple pods can get evicted because of low ephemeral storage in a long-running

Code Cache cluster.

Cloud Native Compiler 1.4.0

Release Date: July 8, 2022

New Features

• Early access of the Compiler Cache. The Compiler Cache stores previously

performed optimizations and serves them from the cache rather than recompiling

whenever possible. Running your workloads with a Compiler Cache leads to lower

CNC CPU usage and faster warmup time.

Known Issues

• Compiler Cache is not scalable and too many connections overload the database.

• Multiple pods can get evicted because of low ephemeral storage in a long-running

Code Cache cluster.

Cloud Native Compiler 1.3.0

Release Date: May 9, 2022

New Features

• Simplified installation and configuration with Helm charts.

Known Issues

• ZVM-23070 - Using Cloud Native Compiler with local ReadyNow can dramatically

increase the CPU required to deliver the compilations in time. Monitor your compiler

output and look for connections being rejected and the JVM switching to local

compilation, and scale out your CNC instance accordingly.

Cloud Native Compiler 1.2.0

Release Date: February 24, 2021

Cloud Native Compiler 1.4.0

18

New Features

• Fallback to local JIT compilation when Cloud Native Compiler is unreachable or

underperforming.

• You can now provide an existing ReadyNow profile as the input of the

-XX:ProfileLogIn={file} flag. Note that generating a ReadyNow profile using

the -XX:ProfileLogOut={file} is not supported with Cloud Native Compiler yet.

Cloud Native Compiler 1.1.0

Release Date: December 20, 2021

New Features

• Built-in monitoring stack with Prometheus and Grafana.

• JDK 17 support.

Known Issues

• The CNC gateway is currently configured with one instance. Do not attempt to

increase the number of gateway instances.

• Extremely slow disk I/o configurations (with latencies in the multiple seconds) can

lead to internal crashes and data loss within CNC (due to Artemis crashes). Avoid

configuring CNC with pods using very slow HDD or network volumes.

Cloud Native Compiler 1.0.0

Release Date: October 15, 2021

This is the first release of Cloud Connected Compiler (CNC), and we are really excited

about it!

New Features

• Cloud Native Compiler server able to provide JIT compilations to Azul Zulu Prime

Builds of OpenJDK 12.09.1.0 and later.

• Configuration files to provision an AWS Elastic Kubernetes Service cluster for your

Cloud Native Compiler 1.1.0

19

CNC server.

• A sample Grafana dashboard for monitoring your CNC server.

Azul Platform Core Third Party Licenses
This page contains links to the documents with licenses for third party software

included in Optimizer Hub.

Version Optimizer Hub TPL

1.9.3 PDF

1.9.2 PDF

1.9.1 PDF

1.9.0 PDF

Optimizer Hub Installation Instructions

Installing Optimizer Hub

Optimizer Hub is shipped as a Kubernetes cluster which you provision and run on your

cloud or on-premise servers.

Supported Platforms

Optimizer Hub is available for x64 platforms only, however, supports connections from

Zing JVMs running on both x86 and ARM 64-bit machines.

Supported Kubernetes Environments

You can install Optimizer Hub on any Kubernetes cluster:

• Kubernetes clusters that you manually configure with kubeadm.

"Installing Optimizer Hub on Kubernetes".

• A single-node minikube cluster.

"Installing Optimizer Hub on Minikube".

Azul Platform Core Third Party Licenses

20

/optimizer-hub/tpls/optimizer_hub_1.9.3_tpl.pdf
/optimizer-hub/tpls/optimizer_hub_1.9.2_tpl.pdf
/optimizer-hub/tpls/optimizer_hub_1.9.1_tpl.pdf
/optimizer-hub/tpls/optimizer_hub_1.9.0_tpl.pdf
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/

• Managed cloud Kubernetes services such as Amazon Web Services Elastic

Kubernetes Service (EKS), Google Kubernetes Engine, and Microsoft Azure Managed

Kubernetes Service.

"Installing Optimizer Hub on Elastic Kubernetes Service".

NOTE
By downloading and using Optimizer Hub, you agree with the Azul

Platform Prime Evaluation Agreement.

Installing Optimizer Hub on Kubernetes

Optimizer Hub uses Helm as the deployment manifest package manager. There is no

need to manually edit any Kubernetes deployment manifests. You can configure the

installation overriding the default settings from values.yaml in a custom values file.

Here we refer to the file as values-override.yaml but you can give it any name.

NOTE

This section describes setting up an evaluation or developer version of

Optimizer Hub without SSL authentication. To set up a production

version with full SSL authentication, see "Configuring Optimizer Hub with

SSL Authentication".

You should install Optimizer Hub in a location to which the JVM machines have

unauthenticated access. You can run Optimizer Hub in the same Kubernetes cluster as

the client VMs or in a separate cluster.

NOTE
If you are upgrading an existing installation, make sure to check

"Upgrading Optimizer Hub".

Optimizer Hub Helm Charts

Azul provides Optimizer Hub Helm Charts on GitHub. You can download the full

package as a zip.

Installing Optimizer Hub on Kubernetes

21

https://www.azul.com/wp-content/uploads/Azul-Platform-Prime-Evaluation-Agreement.pdf
https://www.azul.com/wp-content/uploads/Azul-Platform-Prime-Evaluation-Agreement.pdf
https://github.com/AzulSystems/opthub-helm-charts/blob/master/values.yaml
https://github.com/AzulSystems/opthub-helm-charts
https://github.com/AzulSystems/opthub-helm-charts/archive/refs/heads/master.zip
https://github.com/AzulSystems/opthub-helm-charts/archive/refs/heads/master.zip

Installing Optimizer Hub

These instructions are for installing a full Optimizer Hub instance with both Cloud

Native Compiler and ReadyNow Orchestrator. In case you only want to install the full

Optimizer Hub, but only a part of the services, see "Configuring the Active Optimizer Hub

Services".

1. Install Azul Zulu Prime Builds of OpenJDK 21.09.1.0 or newer on your client machine.

2. Make sure your Helm version is v3.8.0 or newer.

3. Add the Azul Helm repository to your Helm environment:

helm repo add opthub-helm https://azulsystems.github.io/opthub-
helm-charts/
helm repo update

4. Create a namespace (i.e. my-opthub) for Optimizer Hub.

kubectl create namespace my-opthub

5. Create the values-override.yaml file in your local directory.

6. If you have a custom cluster domain name, specify it in values-override.yaml :

clusterName: "example.org"

7. If you want specific labels being added to your Kubernetes objects, define them in

your values-override.yaml , for example as follows:

gateway:
 applicationLabels: # Additional labels for Deployment/StatefulSet
 podTemplateLabels: # Additional labels for POD
 serviceLabels: # Additional labels for Service

8. Configure sizing and autoscaling of the Optimizer Hub components according to the

"sizing guide". By default, autoscaling is on and Optimizer Hub can scale up to 10

Compile Brokers. For example, you could set the following:

Installing Optimizer Hub on Kubernetes

22

https://www.azul.com/downloads/#prime

simpleSizing:
 vCores: 32
 minVCores: 32
 maxVCores: 106

9. If needed, configure external access in your cluster. If your JVMs are running within

the same cluster as Optimizer Hub, you can ignore this step. Otherwise, it is

necessary to configure an external load balancer in values-override.yaml .

For clusters running on AWS an example configuration file is available on Azul’s

GitHub.

10. Install using Helm, passing in the values-override.yaml .

helm install opthub opthub-helm/azul-opthub -n my-opthub -f values-
override.yaml

◦ In case you need a specific Optimizer Hub version, please use --version

1.9.4 flag.

◦ The command should produce output similar to this:

NAME: opthub
LAST DEPLOYED: Wed Jan 31 12:19:58 2024
NAMESPACE: my-opthub
STATUS: deployed
REVISION: 1
TEST SUITE: None

11. Verify that all started pods are ready:

kubectl get all -n my-opthub

Configuring Persistent Storage

By default, Optimizer Hub pods allocate data directories on the root disk or in an

emptyDir volume, both residing in the pod’s ephemeral storage. If the pod dies, all data

is lost and has to be regenerated after restart.

Installing Optimizer Hub on Kubernetes

23

https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-awslb.yaml
https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-awslb.yaml

You can move the pods' data directories to persistent volumes, so the data survives pod

crashes, restarts and even scale down/up events. Furthermore, this allows you to lower

the local storage sizing of target Kubernetes worker nodes, since large data directories

are stored in separate volumes outside of these worker nodes.

When you use persistent volumes, you create 2 additional Kubernetes objects per pod:

• persistentVolumeClaim (PVC), whose name is derived from parent pod

• persistentVolume (PV), which is allocated automatically by chosen the storage

class and has an auto-generated name.

PV and PVC objects lifecycles are separate from other Optimizer Hub Kubernetes

objects. When you uninstall Optimizer Hub using the helm chart, these objects remain in

cluster for as long as the installation namespace exists. Removal of namespace or

manual deletion of PVCs within the namespace automatically removes their associated

PVs from the Kubernetes cluster as well.

You can configure persistent volumes for the db and builtinStorage components.

The configuration is the same for both components. Your target Kubernetes cluster

needs to have at least one storage class configured. By default, Optimizer Hub uses the

default configured storage class.

NOTE

If you are using AWS EBS Storage for your persistent storage, use gp3

volumes instead of gp2 volumes. gp2 volumes have limited IOPS which

can affect Optimizer Hub performance. Additional configuration info for

AWS S3 Storage is configuring-aws-s3-storage.

NOTE
If you are using Azure Blob Storage, please check "Installing Optimizer

Hub on Azure" for additional settings.

Configuration with Custom Resources Values

Example pod sizing with 10GiB for root volume and 100GiB for data volume:

Installing Optimizer Hub on Kubernetes

24

db:
 resources:
 requests:
 cpu: "5"
 memory: "20Gi"
 ephemeral-storage: "10Gi"
 limits:
 cpu: "5"
 memory: "20Gi"
 ephemeral-storage: "10Gi"
 persistentDataVolume:
 enabled: true
 size: "100Gi"

If you want to use recommended sizing of pods, you still need to explicitly override the

default size of the ephemeral storage. This is in order to not waste resources and

increase pod schedulability on smaller sized nodes.

db:
 resources:
 requests:
 ephemeral-storage: "10Gi"
 limits:
 ephemeral-storage: "10Gi"
 persistentDataVolume:
 enabled: true
 size: "100Gi"

Configuration with Custom Storage Class

If your cluster has multiple configured storage classes, and you want to use a non-

default storage class, do the following:

db:
 resources:
 persistentDataVolume:
 enabled: true
 storageClassName: "my-storage-class"

Enabling the Management Gateway

The Management Gateway enables two pieces of functionality:

Installing Optimizer Hub on Kubernetes

25

• Access to REST APIs for managing ReadyNow profiles

• Cross-region synchronization of ReadyNow Profiles

To enable the Management Gateway, set mgmtGateway.enabled to true in value-

override.yaml , see management-gateway-parameters for more info.

Cleaning Up

To uninstall a deployed Optimizer Hub, run the following command:

helm uninstall opthub -n my-opthub
kubectl delete namespace my-opthub

Installing Optimizer Hub on AWS Elastic Kubernetes Service

If you are using Amazon Web Services, you can simplify the process of starting and

maintaining your cluster considerably by using the Elastic Kubernetes Service (EKS).

Provisioning on EKS

To provision Optimizer Hub on EKS:

1. Install and configure the eksctl and aws command-line tools.

If you don’t have permissions to set up networking components, have your

administrator create the Virtual Public Cloud.

2. Download opthub-install-1.9.4.zip. Navigate to the opthub-install/eks directory.

You can pass the opthub_eks.yaml file to the eksctl to create the cluster. For

more information, look at the eskctl config file schema.

3. Replace the placeholders {your-cluster-name} , {your-region} , and {path-

to-your-key} with the correct values.

4. If you are working with an existing VPC and do not want eksctl to create one,

uncomment the vpc section and replace {your-vpc} and {your-subnet} with

the correct values.

Installing Optimizer Hub on AWS Elastic Kubernetes Service

26

https://aws.amazon.com/eks/
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://cdn.azul.com/optimizer_hub/1.9.4/opthub-install-1.9.4.zip
https://eksctl.io/usage/schema/

5. Apply the file with the following command:

eksctl create cluster -f opthub_eks.yaml

This command takes several minutes to execute.

Successful command output:

2021-08-20 20:09:53 [¬] eksctl version 0.60.0
2021-08-20 20:09:53 [¬] using region eu-central-1
2021-08-20 20:09:54 [¬] setting availability zones to [eu-central-
1a eu-central-1b eu-central-1c]
2021-08-20 20:09:54 [¬] subnets for eu-central-1a -
public:192.168.0.0/19 private:192.168.96.0/19
2021-08-20 20:09:54 [¬] subnets for eu-central-1b -
public:192.168.32.0/19 private:192.168.128.0/19
2021-08-20 20:09:54 [¬] subnets for eu-central-1c -
public:192.168.64.0/19 private:192.168.160.0/19
2021-08-20 20:09:54 [¬] nodegroup "infra" will use "ami-
05f67790af078876f" [AmazonLinux2/1.19]
2021-08-20 20:09:54 [¬] using SSH public key
"/Users/XXXXXXXX/.ssh/id_rsa.pub" as "eksctl-eks-opthub-cluster-
nodegroup-infra-19:01:7b:fb:83:19:12:bb:17:59:40:37:22:dc:82:86"
2021-08-20 20:09:54 [¬] nodegroup "opthubservice" will use "ami-
05f67790af078876f" [AmazonLinux2/1.19]
2021-08-20 20:09:54 [¬] using SSH public key
"/Users/XXXXXXXX/.ssh/id_rsa.pub" as "eksctl-eks-opthub-cluster-
nodegroup-opthubserver-
19:01:7b:fb:83:19:12:bb:17:59:40:37:22:dc:82:86"
2021-08-20 20:09:54 [¬] nodegroup "opthubcache" will use "ami-
05f67790af078876f" [AmazonLinux2/1.19]
2021-08-20 20:09:54 [¬] using SSH public key
"/Users/XXXXXXXX/.ssh/id_rsa.pub" as "eksctl-eks-opthub-cluster-
nodegroup-opthubcache-
19:01:7b:fb:83:19:12:bb:17:59:40:37:22:dc:82:86"
2021-08-20 20:09:54 [¬] nodegroup "opthubinfra" will use "ami-
05f67790af078876f" [AmazonLinux2/1.19]
2021-08-20 20:09:54 [¬] using SSH public key
"/Users/XXXXXXXX/.ssh/id_rsa.pub" as "eksctl-eks-opthub-cluster-
nodegroup-opthubinfra-
19:01:7b:fb:83:19:12:bb:17:59:40:37:22:dc:82:86"
2021-08-20 20:09:55 [¬] using Kubernetes version 1.19
2021-08-20 20:09:55 [¬] creating EKS cluster "eks-opthub-cluster"
in "eu-central-1" region with un-managed nodes
2021-08-20 20:09:55 [¬] 4 nodegroups (opthubcache, opthubinfra,
opthubserver, infra) were included (based on the include/exclude
rules)

Installing Optimizer Hub on AWS Elastic Kubernetes Service

27

2021-08-20 20:09:55 [¬] will create a CloudFormation stack for
cluster itself and 4 nodegroup stack(s)
2021-08-20 20:09:55 [¬] will create a CloudFormation stack for
cluster itself and 0 managed nodegroup stack(s)
2021-08-20 20:09:55 [¬] if you encounter any issues, check
CloudFormation console or try 'eksctl utils describe-stacks
--region=eu-central-1 --cluster=eks-opthub-cluster'
2021-08-20 20:09:55 [¬] CloudWatch logging will not be enabled for
cluster "eks-opthub-cluster" in "eu-central-1"
2021-08-20 20:09:55 [¬] you can enable it with 'eksctl utils
update-cluster-logging --enable-types={SPECIFY-YOUR-LOG-TYPES-HERE
(e.g. all)} --region=eu-central-1 --cluster=eks-opthub-cluster'
2021-08-20 20:09:55 [¬] Kubernetes API endpoint access will use
default of {publicAccess=true, privateAccess=false} for cluster
"eks-opthub-cluster" in "eu-central-1"
2021-08-20 20:09:55 [¬] 2 sequential tasks: { create cluster
control plane "eks-opthub-cluster", 3 sequential sub-tasks: { wait
for control plane to become ready, 1 task: { create addons },
4 parallel sub-tasks: { create nodegroup "infra", create nodegroup
"opthubserver", create nodegroup "opthubcache", create nodegroup
"opthubinfra" } } }
2021-08-20 20:09:55 [¬] building cluster stack "eksctl-eks-opthub-
cluster-cluster"
2021-08-20 20:09:55 [¬] deploying stack "eksctl-eks-opthub-cluster-
cluster"
2021-08-20 20:10:25 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-cluster"
2021-08-20 20:10:55 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-cluster"
2021-08-20 20:19:57 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-cluster"
...
2021-08-20 20:20:58 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-cluster"
2021-08-20 20:25:06 [¬] building nodegroup stack "eksctl-eks-
opthub-cluster-nodegroup-opthubinfra"
2021-08-20 20:25:06 [¬] building nodegroup stack "eksctl-eks-
opthub-cluster-nodegroup-opthubcache"
2021-08-20 20:25:06 [¬] building nodegroup stack "eksctl-eks-
opthub-cluster-nodegroup-opthubserver"
2021-08-20 20:25:06 [¬] building nodegroup stack "eksctl-eks-
opthub-cluster-nodegroup-infra"
2021-08-20 20:25:07 [¬] deploying stack "eksctl-eks-opthub-cluster-
nodegroup-infra"
2021-08-20 20:25:07 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-infra"
2021-08-20 20:25:07 [¬] deploying stack "eksctl-eks-opthub-cluster-
nodegroup-opthubserver"
2021-08-20 20:25:07 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-opthubserver"

Installing Optimizer Hub on AWS Elastic Kubernetes Service

28

2021-08-20 20:25:07 [¬] deploying stack "eksctl-eks-opthub-cluster-
nodegroup-opthubcache"
2021-08-20 20:25:07 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-opthubcache"
2021-08-20 20:25:07 [¬] deploying stack "eksctl-eks-opthub-cluster-
nodegroup-opthubinfra"
2021-08-20 20:25:07 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-opthubinfra"
2021-08-20 20:25:23 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-infra"
2021-08-20 20:25:24 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-opthubcache"
...
2021-08-20 20:32:16 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-opthubcache"
2021-08-20 20:32:16 [¬] waiting for the control plane
availability...
2021-08-20 20:32:16 [¬] saved kubeconfig as
"/Users/XXXXXXXX/.kube/config"
2021-08-20 20:32:16 [¬] no tasks
2021-08-20 20:32:16 [¬] all EKS cluster resources for "eks-opthub-
cluster" have been created
2021-08-20 20:32:16 [¬] adding identity
"arn:aws:iam::912192438162:role/eksctl-eks-opthub-cluster-
nodegroup-infra-NodeInstanceRole-9VFWHMM30SSV" to auth ConfigMap
2021-08-20 20:32:16 [¬] nodegroup "infra" has 0 node(s)
2021-08-20 20:32:16 [¬] waiting for at least 1 node(s) to become
ready in "infra"
2021-08-20 20:32:49 [¬] nodegroup "infra" has 1 node(s)
2021-08-20 20:32:49 [¬] node "ip-192-168-90-183.eu-central-
1.compute.internal" is ready
2021-08-20 20:32:49 [¬] adding identity
"arn:aws:iam::912192438162:role/eksctl-eks-opthub-cluster-
nodegroup-opthubser-NodeInstanceRole-16JA2COTZHLWQ" to auth
ConfigMap
2021-08-20 20:32:49 [¬] nodegroup "opthubserver" has 0 node(s)
2021-08-20 20:32:49 [¬] waiting for at least 1 node(s) to become
ready in "opthubserver"
2021-08-20 20:33:49 [¬] nodegroup "opthubserver" has 1 node(s)
2021-08-20 20:33:49 [¬] node "ip-192-168-90-115.eu-central-
1.compute.internal" is ready
2021-08-20 20:33:49 [¬] adding identity
"arn:aws:iam::912192438162:role/eksctl-eks-opthub-cluster-
nodegroup-opthubcac-NodeInstanceRole-5KIIEOTU3ELU" to auth
ConfigMap
2021-08-20 20:33:49 [¬] nodegroup "opthubcache" has 0 node(s)
2021-08-20 20:33:49 [¬] waiting for at least 1 node(s) to become
ready in "opthubcache"
2021-08-20 20:34:21 [¬] nodegroup "opthubcache" has 1 node(s)
2021-08-20 20:34:21 [¬] node "ip-192-168-70-66.eu-central-

Installing Optimizer Hub on AWS Elastic Kubernetes Service

29

1.compute.internal" is ready
2021-08-20 20:34:21 [¬] adding identity
"arn:aws:iam::912192438162:role/eksctl-eks-opthub-cluster-
nodegroup-opthubinf-NodeInstanceRole-103G0W4M1XCZ7" to auth
ConfigMap
2021-08-20 20:34:21 [¬] nodegroup "opthubinfra" has 0 node(s)
2021-08-20 20:34:21 [¬] waiting for at least 1 node(s) to become
ready in "opthubinfra"
2021-08-20 20:35:37 [¬] nodegroup "opthubinfra" has 1 node(s)
2021-08-20 20:35:37 [¬] node "ip-192-168-46-62.eu-central-
1.compute.internal" is ready
2021-08-20 20:37:39 [¬] kubectl command should work with
"/Users/XXXXXXXX/.kube/config", try 'kubectl get nodes'
2021-08-20 20:37:39 [¬] EKS cluster "eks-opthub-cluster" in "eu-
central-1" region is ready

Here is everything that opthub_eks.yaml creates in your AWS account:

• CloudFormation stacks for the main EKS cluster and each of the NodeGroups in the

cluster.

• A Virtual Private Cloud called eksctl-{cluster-name}-cluster/VPC. If you chose to use

an existing VPC, this is not created. You can explore the VPC and its related

networking components in the AWS VPC console. The VPC has all of the required

networking components configured:

◦ A set of three public subnets and three private subnets

◦ An Internet Gateway

◦ Route Tables for each of the subnets

◦ An Elastic IP Address for the cluster

◦ A NAT Gateway

• An EKS Cluster, including four nodegroups with one m5.2xlarge instance provisioned:

◦ infra - For running Grafana and Prometheus.

◦ opthubinfra - For running the Optimizer Hub infrastructure components.

◦ opthubcache - For running the Optimizer Hub cache.

◦ opthubserver - For running the Optimizer Hub compile broker settings.

Installing Optimizer Hub on AWS Elastic Kubernetes Service

30

• IAM artifacts for the Autoscaling Groups:

◦ Roles for the Autoscaler groups for the cluster and for each subnet

◦ Policies for the EKS autoscaler

Setting Up an External Load Balancer

If you need to connect to Optimizer Hub from outside the Kubernetes cluster, you need

to setup up a load balancer in front of the gateway instances:

To set up a load balancer, please follow AWS documentation regarding load balancer

controller setup.

Installing Optimizer Hub on EKS

Because opthub_eks.yaml file creates the nodegroups in the cluster, you have to

pass in an additional configuration file when installing via Helm. The

opthub_eks.yaml file is located in opthub-install/eks/values-eks.yaml and

includes the nodegroup affinity settings and other settings EKS expects.

To continue with the full installation instructions for Optimizer Hub, please refer to

"Installing Optimizer Hub on Kubernetes". In case you don’t want to install the full

Optimizer Hub, but only a part of the services, check "Configuring the Active Optimizer

Hub Services".

To install using the values-eks.yaml config file, run the following command:

helm install opthub opthub-helm/azul-opthub -n my-opthub -f values-
eks.yaml -f values-override.yaml

When adding multiple values files, remember the last one takes precedence.

Configuring AWS S3 Storage

You can configure your Optimizer Hub to use AWS S3 storage instead of the internal

blob storage in the internal builtInStorage pod. When you use AWS S3 storage, the

builtInStorage pod is not created at all.

Installing Optimizer Hub on AWS Elastic Kubernetes Service

31

https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html

You can configure S3 storage by adding the following to values-override.yaml :

storage:
 blobStorageService: s3 # available options: builtin-storage, azure-
blob, s3
 s3:
 # opthub-* buckets examples: opthub-sandbox, opthub-demo
 commonBucket: opthub-storage0

Using Kubernetes Nodes and Permissions

To configure AWS S3 storage, use the following configuration. Ensure that your

Kubernetes nodes with opthub-compilebroker and opthub-gateway have RW

permissions to S3 bucket(s), and the target buckets exist.

A role with the below policy must be assigned to instances (EC2, EC2 ASG, Fargate, etc)

for the opthub-compilebroker and opthub-gateway pods.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::opthub-*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:*Object"
],
 "Resource": [
 "arn:aws:s3:::opthub-*/*"
],
 "Effect": "Allow"
 }
]
}

Using AWS Service Accounts

If your security practices do not allow you to give nodes access to S3 buckets, you can

Installing Optimizer Hub on AWS Elastic Kubernetes Service

32

also grant access to just the key services in Optimizer Hub. You can do this by

configuring AWS IAM, roles, and permissions as described in the AWS documentation.

In the next steps, Optimizer Hub assumes the role name is opthub-s3-role . The IAM

role trust relationship entry needs the following additional settings in AWS (you will

need to change the IDs in this example to align with your configuration):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::163957972732:oidc-
provider/oidc.eks.us-west-
2.amazonaws.com/id/F7E8B430691CFE3B776B8CA663896762"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringLike": {
 "oidc.eks.us-west-
2.amazonaws.com/id/F7E8B430691CFE3B776B8CA663896762:sub":
"system:serviceaccount:*:opthub*",
 "oidc.eks.us-west-
2.amazonaws.com/id/F7E8B430691CFE3B776B8CA663896762:aud":
"sts.amazonaws.com"
 }
 }
 }
]
}

After creating the Service Accounts, add the following settings to your values-

override.yaml file:

deployment:
 serviceAccount:
 annotations:
 eks.amazonaws.com/role-arn: arn:aws:iam::<...>:role/opthub-
s3-role

The Helm chart of Optimizer Hub creates the following Service Accounts:

Installing Optimizer Hub on AWS Elastic Kubernetes Service

33

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

• opthub-cache

• opthub-compile-broker

• opthub-gateway

• opthub-operator

Storage for ReadyNow Orchestrator

You can limit the usage of persistent storage by ReadyNow Orchestrator with the

readynow-orchestrator-defaults.

Cleaning Up

Run the following command:

eksctl delete cluster -f opthub_eks.yaml

Installing Optimizer Hub on Microsoft Azure

To install Optimizer Hub on Azure, follow the general "Kubernetes" instructions. This

document provides additional configurations specific for Azure.

Configuring Azure Blob Storage

Following Helm values activate Azure Blob Storage. Currently, the default configuration

uses MinIO which is deployed as part of Optimizer Hub.

storage:
 blobStorageService: azure-blob
 azureBlob:
 endpoint: https://{yourendpoint}.blob.core.windows.net
 container: {your-container}
 authMethod: {method} # sas-token, connection-string, or default-
credentials

• When using authMethod:sas-token :

Installing Optimizer Hub on Microsoft Azure

34

secrets:
 azure:
 blobStorage:
 sasToken: "{your-token}"

• When using authMethod:connection-string :

secrets:
 azure:
 blobStorage:
 connectionString: "{your-connection-string}"

Storage for ReadyNow Orchestrator

You can limit the usage of persistent storage by ReadyNow Orchestrator with the

readynow-orchestrator-defaults.

Installing Optimizer Hub on Google Cloud

To install Optimizer Hub on Google Cloud, please follow the instructions on "Installing

Optimizer Hub on Kubernetes".

If you want to install Optimizer Hub on Google Cloud with S3 compatibility mode,

instead of the builtin storage pod, you need the following additional settings.

Configuring Storage

Use the S3 compatible storage and specify a bucket name in your values-

override.yaml :

storage:
 blobStorageService: s3
 s3:
 commonBucket: opthub-storage0

Configuring Compile Broker

Add the following extraArgumentsMap section under compileBroker in your

values-override.yaml :

Installing Optimizer Hub on Google Cloud

35

compileBroker:
 extraArgumentsMap:
 "quarkus.s3.endpoint-override": "https://storage.googleapis.com"
 "quarkus.s3.aws.credentials.type": static
 "quarkus.s3.aws.credentials.static-provider.access-key-id":
"{your access key}"
 "quarkus.s3.aws.credentials.static-provider.secret-access-key":
"{your secret key}"

Configuring Gateway

Add the following extraArgumentsMap section gateway in your values-

override.yaml :

gateway:
 extraArgumentsMap:
 "quarkus.s3.endpoint-override": "https://storage.googleapis.com"
 "quarkus.s3.aws.credentials.type": static
 "quarkus.s3.aws.credentials.static-provider.access-key-id":
"{your access key}"
 "quarkus.s3.aws.credentials.static-provider.secret-access-key":
"{your secret key}"

Configuring Cache

Add the following extraArgumentsMap section cache in your values-

override.yaml :

cache:
 extraArgumentsMap:
 "quarkus.s3.endpoint-override": "https://storage.googleapis.com"
 "quarkus.s3.aws.credentials.type": static
 "quarkus.s3.aws.credentials.static-provider.access-key-id":
"{your access key}"
 "quarkus.s3.aws.credentials.static-provider.secret-access-key":
"{your secret key}"

Installing Optimizer Hub on Minikube

Minikube can be used for testing and evaluating Optimizer Hub.

You should run Optimizer Hub on minikube only for evaluation purposes. Make sure

your minikube meets the 18 vCore minimum for running Optimizer Hub. Although

Installing Optimizer Hub on Minikube

36

minikube can run on multiple platforms, Optimizer Hub is only available for the x64

platform, so not on macOS with M1/2.

Installing Minikube

Install minikube for your platform following this installation guide.

Installing Optimizer Hub

Optimizer Hub uses Helm as the deployment manifest package manager. There is no

need to manually edit any Kubernetes deployment manifests.

1. Make sure your Helm version is v3.8.0 or newer.

2. Add the Azul Helm repository to your Helm environment:

helm repo add opthub-helm https://azulsystems.github.io/opthub-
helm-charts/
helm repo update

3. Create a namespace (i.e. my-opthub) for Optimizer Hub.

minikube kubectl -- create namespace my-opthub

4. Create a configuration file values-minikube.yaml .

An example file is available on GitHub in the Azul "opthub-helm-charts" project, to

disable all resource definitions.

As the supplied values file for minikube resets pod resources to null, we can simply

add only the persistent volume section:

db:
 resources:
 persistentDataVolume:
 enabled: true

You can also set the volume size if the default 200Gi is too big for local testing:

Installing Optimizer Hub on Minikube

37

https://minikube.sigs.k8s.io/docs/start/
https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-minikube.yaml

db:
 resources:
 persistentDataVolume:
 enabled: true
 size: "50Gi"

5. Install using Helm, passing in the values-minikube.yaml . In case you don’t want

to install the full Optimizer Hub, but only a part of the services, first check

"Configuring the Active Optimizer Hub Services".

helm install opthub opthub-helm/azul-opthub -n my-opthub -f values-
minikube.yaml

The command should produce output similar to this:

NAME: opthub
LAST DEPLOYED: Mon Jan 30 14:35:29 2023
NAMESPACE: my-opthub
STATUS: deployed
REVISION: 1
TEST SUITE: None

6. Verify that all started pods are ready:

minikube kubectl -- get all -n my-opthub

Uninstalling Optimizer Hub from Minikube

Optimizer Hub can be removed from minikube using helm , after which the namespace

can also be deleted.

helm uninstall opthub -n my-opthub
minikube kubectl -- delete namespace my-opthub

Upgrading Optimizer Hub

Upgrade an existing Optimizer Hub installation to a newer version with the following

commands:

Upgrading Optimizer Hub

38

helm repo update
helm upgrade opthub opthub-helm/azul-opthub -n my-opthub -f values-
override.yaml
kubectl get all -n my-opthub

When upgrading an existing Optimizer Hub installation, make sure to validate your

values-override.yaml file, as parameters might have changed.

Changed Values in 1.8

In Optimizer Hub 1.8, all major artifacts and command line switches use the updated

branding. This includes, but is not limited to:

• Command-line JVM options to configure "Cloud Native Compiler" and readynow-

orchestrator-jvm-options.

• Helm repository locations, names, and parameter names:

github.com/AzulSystems/opthub-helm-charts.

• "REST API URLs".

NOTE

If you are using release 1.7 and earlier, all of the previous spellings of

artifacts still work. Additionally, all of the pre-1.8 command-line

arguments continue to work for a period of one year from the release of

1.8.

Upgrade From Specific Versions

From Version 1.7.0

If you are upgrading from versions prior to 1.7.0, and you are using a custom

values.yaml file with parameters for the storage component, rename the yaml block

from storage to builtinStorage . For example:

Before

Upgrading Optimizer Hub

39

https://github.com/AzulSystems/opthub-helm-charts

storage:
 persistentDataVolume:
 enabled: true
 size: "200Gi"
 storageClassName: ""

After

builtinStorage:
 persistentDataVolume:
 enabled: true
 size: "200Gi"
 storageClassName: ""

From Version 1.6.1

If you are upgrading from version 1.6.1 with persistent storage, follow these steps

before running the helm upgrade:

1. Connect into the storage pod:

kubectl exec --stdin --tty storage-0 -- /bin/sh

2. Inside the pod run the following command to change permissions:

chown -R 10001 /data && chmod u+rxw /data

3. After the chmod command is completed, you can exit the pod shell with ctrl-d and

continue with the helm upgrade.

Configuring Optimizer Hub

Optimizer Hub Generic Defaults

Optimizer Hub is shipped as a Helm chart with all the defaults as specified in the

values.yaml file. Here you find a list of the most important generic values that can be

modified to match Optimizer Hub to your environment.

Specific settings can be found on the configuration pages of the service itself, for

Configuring Optimizer Hub

40

https://github.com/AzulSystems/opthub-helm-charts/blob/master/values.yaml

example, readynow-orchestrator-defaults.

Database Parameters

Option Description Default

db.enabled Define wether the database node is

installed.

Is set to false in ReadyNow Orchestrator

only mode, using values-disable-

compiler.yaml

true

Database Schema Parameters

Option Description Default

dbschema.auto-recreate.enabled If enabled, automatically recovers from

database pod restarts with loss of

schema.

If you have a database and this database

is not using a persistence volume, this

setting must be set to true, otherwise you

need a manual interaction if the pod is

restored.

false

Management Gateway Parameters

Option Description Default

mgmtGateway.enabled Define if the Management Gateway needs

to be enabled to expose the REST APIs for

ReadyNow Orchestrator and/or Cross-

Region Sync.

false

Optimizer Hub Generic Defaults

41

Option Description Default

mgmtGateway.service.httpEndpoint.p

ort

The port used by the Management

Gateway.

8080

Cross-Region Sync Parameters

Option Description Default

synchronization.enabled Define if Cross-Region Sync needs to be

enabled. You must also enable the

Management Gateway for this setting to

become effective.

true

synchronization.peers A comma separated list of peer

Management Gateway URLs from other

Optimizer Hub instances to include in the

syncing process.

synchronization.initialDelay Initial delay for the periodic

synchronization task.

PT180s

synchronization.period Defines a periodicity of a synchronization

with the specified Optimizer Hub peers.

PT30s

Simple Sizing Parameters

See configuring-capacity.

SSL Parameters

See "Configuring Optimizer Hub with SSL Authentication".

Storage Parameters

Storage parameters depend on the platform of your deployment:

Optimizer Hub Generic Defaults

42

#management-gateway-parameters

• storage

• configuring-aws-s3-storage

• configuring-azure-blob-storage

Configuring the Active Optimizer Hub Services

Optimizer Hub can run in different modes:

• Full: both the Cloud Native Compiler and ReadyNow Orchestrator are available.

This is the default configuration.

• ReadyNow only: only ReadyNow Orchestrator is available.

Use the installation instructions below.

Install Only ReadyNow Orchestrator

To install with only ReadyNow Orchestrator, pass in values-disable-

compiler.yaml , together with your values-override.yaml :

helm install opthub opthub-helm/azul-opthub \
 -n my-opthub \
 -f values-override.yaml \
 -f values-disable-compiler.yaml

Disabling Cloud Native Compiler on a Full Optimizer Hub Installation

If you installed a full installation of full Optimizer Hub with Cloud Native Compiler and

ReadyNow Orchestrator, you can still disable Cloud Native Compiler by:

• Reinstalling as specified above.

• Or disable the Cloud Native Compiler globally using the

compilations.parallelism.limitPerVm setting, with the value 0 , to override

the default value of 500 .

Configuring the Active Optimizer Hub Services

43

https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-disable-compiler.yaml
https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-disable-compiler.yaml

Enabling the Management Gateway

The Management Gateway enables two pieces of functionality:

• Access to REST APIs for managing ReadyNow profiles

• Cross-region synchronization of ReadyNow Profiles

To enable the Management Gateway, set mgmtGateway.enabled to true in value-

override.yaml , see management-gateway-parameters for more info.

Configuring Optimizer Hub Host and Port

As an Optimizer Hub administrator, you must provide users the host and ports for

connecting to the service. Customers should use the host and port name in the

OptHubHost JVM parameter.

Determining the Optimizer Hub Endpoint

Use the IP address of the Optimizer Hub gateway service as the connection endpoint

for your JVMs.

Using an External Load Balancer

It is strongly recommended to use an external load balancer. If you correctly defined the

load-balancer in values-override.yaml as described in "Installing Optimizer Hub",

you can discover the external IP of the service using the following command:

$ kubectl describe service gateway -n my-opthub | grep 'LoadBalancer
Ingress:'
LoadBalancer Ingress: internal-add1ff3e1591e4f93a49af3523b68e3b-
1321158844.us-west-2.elb.amazonaws.com

JVM customers then connect using the following command:

java -XX:OptHubHost=internal-add1ff3e1591e4f93a49af3523b68e3b-
1321158844.us-west-2.elb.amazonaws.com \
 -XX:+EnableRNO \
 -jar my-app.jar

Configuring Optimizer Hub Host and Port

44

Connecting Without an External Load Balancer

If you did not set up an external load balancer, you can find the endpoint using the

following steps:

1. Run the following command:

kubectl -n my-opthub get services

2. Look for the gateway service and note the ports corresponding to port 50051 inside

the container. This is the port to use for connecting VMs to this Optimizer Hub

cluster.

service/gateway NodePort 10.233.15.55 <none>
8080:31951/TCP,50051:30926/TCP 52d

In this example the ports is 30926 .

NOTE

Only the internal ports 8080 and 50051 in Optimizer Hub are fixed.

The port in each setup is a random value. You need to use this lookup

to find the port of your Optimizer Hub instance.

3. Run the kubectl get nodes command and note the IP address or name of any

node.

4. Concatenate node IP with service ports to get something like

10.22.20.131:30926 . Do not prefix it with http:// .

5. JVM customers set -XX:OptHubHost=host:port flag to the port mapped to

50051.

java -XX:OptHubHost=10.22.20.131:30926 \
 -XX:+EnableRNO \
 -jar my-app.jar

Specifying a Custom Compiler Engine Upload Port

Cloud Native Compiler uses compiler engines to provide instructions for working with a

Configuring Optimizer Hub Host and Port

45

specific version of the JVM. These compiler engines are not shipped with Cloud Native

Compiler. When attempting to use Cloud Native Compiler for compilation, the JVM

checks if the right compiler engine is present and, if not, automatically uploads it to

Cloud Native Compiler.

If your Optimizer Hub instance is using default 8080 HTML ports, or you are fronting it

with a load balancer, then there is nothing the user needs to do to configure uploads

correctly. If you are connecting without a loadbalancer and are not using the default

8080 ports, follow the process described above to provide the JVM user with the host

and port mapped to 8080. The JVM user must specify this host/port in the

-XX:CNCEngineUploadAddress=host:port . In the above example, the host/port

combination is 10.22.20.131:30926 .

Configuring gRPC Proxy

Optimizer Hub comes with Envoy as the default gRPC proxy for optimal session

balancing. But it’s recommended to use your own preferred load balancers, consistent

with how you dispatch HTTP traffic to your other applications. In such a case, disable

Envoy in Optimizer Hub and use your own instance.

Disabling Envoy in Optimizer Hub

Add the following to values-override.yaml :

gwProxy.enabled=false

Useful links

• Deploy a gRPC-based application on an Amazon EKS cluster and access it with an

Application Load Balancer.

• Deploy gRPC services on the backend of the NGINX Ingress controller.

• Kubernetes > Ingress-Nginx Controller > gRPC.

Configuring Optimizer Hub with SSL Authentication

While you can use Optimizer Hub without SSL authentication for development and

Configuring gRPC Proxy

46

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/deploy-a-grpc-based-application-on-an-amazon-eks-cluster-and-access-it-with-an-application-load-balancer.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/deploy-a-grpc-based-application-on-an-amazon-eks-cluster-and-access-it-with-an-application-load-balancer.html
https://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/use-an-ingress-controller-to-access-grpc-services
https://kubernetes.github.io/ingress-nginx/examples/grpc/

evaluation, it is highly recommended that you run your production Optimizer Hub with

SSL authentication.

To enable SSL authentication on your Optimizer Hub:

1. Establish your SSL certificate. To enable SSL encryption of the communication

between the JVM and Optimizer Hub, you need to provide a certificate and a

corresponding private key in the pem format.

NOTE

The common name field in the certificate must match the name of the

Optimizer Hub service as provided to client JVMs via the

—XX:OptHubHost flag. Otherwise there may be issues when

connecting.

2. Enable SSL in your values-overrride.yaml file:

ssl:
 enabled: true

3. Add your certificate and private key. This can be done in several ways:

a. The most secure way to add certificates is using a separate chain that manages

your certificate. You can then point the deployment to a custom secret in the

installation namespace. Such a secret needs to have keys named cert.pem and

key.pem .

ssl:
 secretName: "my-custom-secret"

b. You can add the certificate and private keys directly to the values.yaml as values.

This is the simplest way to run quick experiments in a controlled environment,

especially when you’re installing from the Helm repository. We do not recommend

this approach in production as it embeds private security credentials in a config

file:

Configuring Optimizer Hub with SSL Authentication

47

ssl:
 value:
 cert: |-
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----
 key: |-
 -----BEGIN PRIVATE KEY-----
 ...
 -----END PRIVATE KEY-----

c. If you downloaded and unpacked the Helm chart to a local directory, you can just

place files named cert.pem and key.pem into the root directory of your Helm

chart.

4. Perform Helm installation as shown in the "general installation guide".

Running Azul Zulu Prime JDK Clients with SSL

By default, the Azul Zulu Prime JDK connects to Optimizer Hub using SSL. If you

installed without enabling SSL, you must use the -XX:-OptHubUseSSL flag to instruct

the Azul Zulu Prime JDK to allow unsecured connections to Optimizer Hub.

NOTE
Before version 1.8.0 the flag was called -XX:+/-CNCInsecure .

Because of this change, you need to review your settings.

If you attempt to connect to a Optimizer Hub that is running without SSL and do not

specify the -XX:-OptHubUseSSL flag, you get the following error:

E1011 13:16:23.198074100 29 ssl_transport_security.cc:1446]
Handshake failed with fatal error SSL_ERROR_SSL:
error:1408F10B:SSL routines:ssl3_get_record:wrong version number.

To connect to Optimizer Hub using SSL, make sure the service certificate is trusted by

the client server where you run Azul Zulu Prime JDK. This can be achieved by having the

certificate signed by a publicly trusted certificate authority. If you have an internal CA

trusted within the company infrastructure, make sure it is trusted.

The exact process depends on your OS distribution. Follow the instructions for your OS

Configuring Optimizer Hub with SSL Authentication

48

distribution to register the certificate on your client server. For example, on Ubuntu-

based distributions you run the following command:

sudo openssl x509 -in {path to cert.pem} -inform PEM -out
/usr/local/share/ca-certificates/cert.crt
sudo update-ca-certificates

Alternatively, you can explicitly instruct Azul Zulu Prime JDK to use and trust a specified

certificate on the filesystem by using the -XX:OptHubSSLRootsPath={path to

cert.pem} flag.

If certificate validation fails, your .pem file is missing or does not match the certificate

that you uploaded to Optimizer Hub, you get the following error:

[1.856s][info][concomp] [gRPCEvent] read error!
[1.856s][info][concomp] [gRPC processing] BidiStreamWrapper is dying,
finishing stream 0x7fbec00180f0 with status: failed to connect to all
addresses (14)

Configuring ReadyNow Orchestrator

When you use ReadyNow Orchestrator, JVMs all write profile log candidates to unique

profile names on the service. ReadyNow Orchestrator gathers all of the candidates for a

profile name and decides which is th best candidate to serve to JVM clients requesting

that profile name.

When considering what settings are set on the client versus on the service:

• Individual JVMs decide when ReadyNow Orchestrator should consider their profile

log is a suitable candidate for sharing with other JVMs. They can also override

server-side defaults for profile log nomination candidates and maximum profile log

size.

• ReadyNow Orchestrator also controls the rules for where to store ReadyNow profile

logs, when to clean up old logs, and service-wide defaults for profile log candidate

nomination and maximum profile log size.

Configuring ReadyNow Orchestrator

49

Duration Configuration

When you need to specify the duration in time a process takes, use the PnDTnHnMn.nS

format, where n is the relevant days, hours, minutes or seconds part of the duration.

Configuring Clean Up of Old Profile Logs

ReadyNow Orchestrator performs automatic cleanup of unused profile logs in order to

fit collected data in the configured storage. When the data size in your storage exceeds

a threshold, ReadyNow Orchestrator deletes old profile logs, thus guaranteeing that a

promoted profile log is available for all profile names.

You can also configure ReadyNow Orchestrator to delete unused profile names

completely after a given duration using the

readyNowOrchestrator.cleaner.keepUnrequestedProfileNamesFor

property in your values-override.yaml . For example, to keep unused profiles for 5

days, use the following:

readyNowOrchestrator.cleaner.keepUnrequestedProfileNamesFor=P5D

ReadyNow Orchestrator triggers cleanup when you have used around 60% of the

available space in your storage. If you are using a persistent volume to back up your

storage, ReadyNow Orchestrator calculates the threshold for triggering clean up

automatically. If you are using S3 or Azure Blob Storage, there is no reliable way for

ReadyNow Orchestrator to calculate the size of the blob storage. You must therefore

specify the size using the

readyNowOrchestrator.cleaner.externalPersistentStorageSoftLimit

property, which by default, is 10Gb.

Note that depending on your usage, ReadyNow Orchestrator’s clean-up mechanism may

not be able to keep the actual size of your stored profiles below the size of your storage.

When you reach 90% usage, a warning is printed in the log of the gateway service.

If your storage fills up completely, JVMs attempting to write to ReadyNow Orchestrator

receive an error.

Configuring ReadyNow Orchestrator

50

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/Duration.html#parse(java.lang.CharSequence)
#duration-configuration

Configuring Cross-Region Synchronization of Profiles

When you deploy a separate instance of Optimizer Hub in each region, you can

configure Optimizer Hub to synchronize profile names between Optimizer Hub

instances so that each instance contains at least one promoted profile for each profile

name. For example, when deploying a new version of your program, you may first do a

canary run in one of your regions. This canary run populates the first generation of the

profile for the new version’s profile name. Upon success, you want to launch a full fleet

update in your other regions without doing a canary run in each region. By enabling

cross-region synchronization, the profile that you wrote in the first region is available

when you launch your fleet restarts in other regions.

To enable cross-region synchronization of profiles:

1. Enable the Management Gateway component by setting the following values in

values-override.yaml:

◦ Set mgmtGateway.enabled to true

◦ If necessary, assign a different port than the default 8080 using

mgmtGateway.service.httpEndpoint.port

2. Define the Optimizer Hub instances that you want to synchronize by entering a

comma-separated list of URLs in synchronization.peers .

3. If necessary, adjust the number of profile generations that Optimizer Hub

synchronizes. By default, Optimizer Hub synchronizes the first two generations of the

profile.

See cross-region-sync-parameters for more information about the configuration

options.

ReadyNow Orchestrator Defaults

Optimizer Hub admins can set the following global defaults for ReadyNow profiles in

values-override.yaml :

Configuring ReadyNow Orchestrator

51

Option Description Default

readyNowOrchestrator.debugInfoHist

oryLength

Limit of rolling profile history entries 100

readyNowOrchestrator.cache.enabled Enabling of caching the chunk content on

the gateway

true

readyNowOrchestrator.cache.maxSiz

eBytes

The fixed size of chunk content cache on

the gateway

500000000

readyNowOrchestrator.completedAft

er

Time required after the last profile update,

after which the profile is considered

completed and updates are no longer

possible, duration specified in format

PnDTnHnMn.nS .

PT24H

readyNowOrchestrator.producers.con

tinueRecordingOnPromotion

Flag to define if profiles must still be

recorded after the maxGeneration has

been reached. This can be used for

debugging purposes.

false

readyNowOrchestrator.producers.ma

xConcurrentRecordings

The number of concurrent copies of a

specific generation ReadyNow

Orchestrator accepts before it tells other

JVMs trying to write the same generation

of the same profile name to stop

10

readyNowOrchestrator.producers.ma

xPromotableGeneration

Maximum number of generations

ReadyNow Orchestrator accepts for a

profile name. Note that here is no

'unlimited' value available

3

Configuring ReadyNow Orchestrator

52

#duration-configuration
#duration-configuration

Option Description Default

readyNowOrchestrator.producers.ma

xProfileSize

Limit on the input profile size, in bytes. No

limit by default

0

readyNowOrchestrator.cleaner.enable

d

Enabling of automatic repository clean-up true

readyNowOrchestrator.cleaner.extern

alPersistentStorageSoftLimit

When your storage is backed by azure-

blob or s3 storage, this determines the

threshold for the blob data usage, at

which ReadyNow Orchestrator initiates its

cleanup process.

When your storage is backed by a

persistent storage volume, this threshold

is calculated automatically.

10Gi

readyNowOrchestrator.cleaner.keepU

nrequestedProfileNamesFor

Time limit after which the profile name

gets removed if it was not requested

within the given duration specified in

format PnDTnHnMn.nS .

By default, no limit is defined.

0

readyNowOrchestrator.promotion.mi

nProfileSize

Minimal size (bytes) threshold for all

generations unless per-generation flags

are specified. Per-generation flags take

precedence over the global setting, but the

global might be used as a generation 0

setting in case it is not specified in the

corresponding per-generation setting.

1000000

Configuring ReadyNow Orchestrator

53

#duration-configuration
#duration-configuration
#duration-configuration

Option Description Default

readyNowOrchestrator.promotion.mi

nProfileSizePerGeneration

Minimal size thresholds for each

generation. In case a generation is

missing in the list, it inherits a value from

the previously specified generation or the

global setting, if there is no previous

generation specified.

List of pair <generation>:<size>, separated

by \, .

For more information, check

"Understanding ReadyNow Orchestrator

Generations".

0:1000000\

,1:1000000

0\,2:25000

000\,3:500

00000

readyNowOrchestrator.promotion.mi

nProfileDuration

See previous.

Duration specified in format

PnDTnHnMn.nS .

PT2M

readyNowOrchestrator.promotion.mi

nProfileDurationPerGeneration

See minProfileSizePerGeneration .

List of pair <generation>:<duration>,

separated by \, . The duration must be

specified in the format PnDTnHnMn.nS .

For more information, check

"Understanding ReadyNow Orchestrator

Generations".

0:PT2M\,1:

PT15M\,2:

PT30M\,3:

PT60M

Configuring ReadyNow Orchestrator

54

#duration-configuration
#duration-configuration
#duration-configuration
#duration-configuration

Option Description Default

readyNowOrchestrator.producers.ma

xSynchronizedGeneration

Defines the maximum number of profile

generations to be synced from peers.

Profiles with a higher generation are not

synced from peers.

2

Configuring Prometheus and Grafana

The Optimizer Hub components are already configured to expose key metrics for

scraping by Prometheus. But to be able to monitor this info in a Grafana dashboard,

some additional configuration is required.

In your production systems, you likely want to use your existing Prometheus and

Grafana instances to monitor Optimizer Hub. If you are just evaluating Optimizer Hub,

you may want to install a separate instance of Prometheus and Grafana to just monitor

your test instance of Optimizer Hub.

NOTE
Monitoring Optimizer Hub assumes you have a Prometheus and Grafana

available, or install one within your Kubernetes cluster.

Prometheus Configuration Instructions

Optimizer Hub components expose their metrics on HTTP endpoints in a format

compatible with Prometheus. Annotations are in place in the Helm chart with the details

of the endpoint for every component. For example:

annotations:
 prometheus.io/scrape: "true"
 prometheus.io/port: "8080"
 prometheus.io/path: "/q/metrics"

The following snippet is an example for the Prometheus configuration to scrape the

metrics based on the above annotations:

Configuring Prometheus and Grafana

55

Example scrape config for pods
#
The relabeling allows the actual pod scrape endpoint to be
configured via the
following annotations:
#
* `prometheus.io/scrape`: Only scrape pods that have a value of
`true`
* `prometheus.io/path`: If the metrics path is not `/metrics`
override this.
* `prometheus.io/port`: Scrape the pod on the indicated port
instead of the
pod's declared ports (default is a port-free target if none are
declared).
- job_name: 'kubernetes-pods'
 kubernetes_sd_configs:
 - role: pod

 relabel_configs:
 - source_labels:
[__meta_kubernetes_pod_annotation_prometheus_io_scrape]
 action: keep
 regex: true
 - source_labels:
[__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 # mapping of labels, this handles the `app` label
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: kubernetes_namespace
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: kubernetes_pod_name
 metric_relabel_configs:
 - source_labels:
 - namespace
 action: replace
 regex: (.+)
 target_label: kubernetes_namespace

Configuring Prometheus and Grafana

56

Grafana Configuration Instructions

Once Prometheus is available and collection data from the Optimizer Hub Components,

a dashboard can be added. You can find a Grafana configuration file

cnc_dashboard.json in opthub-install-1.9.4.zip.

This dashboard expects the following labels to be attached to all application metrics,

refering to the Prometheus configuration above:

• cluster_id : The identifier of the Kubernetes cluster on which Optimizer Hub is

installed. This allows you to switch between Optimizer Hub instances in different

clusters.

• kubernetes_namespace : The Kubernetes namespace on which Optimizer Hub is

installed. This setting allows you to switch between Optimizer Hub instances in

different namespaces of the same cluster.

• kubernetes_pod_name : The Kubernetes pod name.

• app : The value of the app label on the pod, which is provided by the labelmap

action from the example Prometheus configuration mentioned below.

You need to manually edit the dashboard file if these labels are named differently in

your environment.

The dashboard also relies on some infrastructure metrics from Kubernetes and

cAdvisor, such as kube_pod_container_resource_requests and

container_cpu_usage_seconds_total .

Sizing and Scaling your Optimizer Hub Installation

In order for the Optimizer Hub to perform the JIT compilation in time, you need to make

sure the installation is sized correctly. You scale Optimizer Hub by specifying the total

number of vCores you wish to allocate to the service. The Helm chart automatically sets

the sizing of the individual Optimizer Hub components.

Sizing and Scaling your Optimizer Hub Installation

57

https://cdn.azul.com/optimizer_hub/1.9.4/opthub-install-1.9.4.zip
https://github.com/kubernetes/kube-state-metrics
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md

Scaling Overview

Scaling Optimizer Hub is controlled by how much capacity Optimizer Hub has to

process compilation requests. This is controlled by the amount of vCores Optimizer Hub

has been provisioned. Note that scaling is primarily a concern when discussing Cloud

Native Compiler. ReadyNow Orchestrator consumes much fewer resources than Cloud

Native Compiler and often never needs to scale beyond its minimum installation.

A critical metric to measure whether your Cloud Native Compiler is responding to

compilation requests in time is the Time to Clear Optimization Backlog (TCOB). When

you start a Java program, there is a burst of compilation activity as a large amount of

optimization requests are put on the compilation queue. Eventually, the compiler

catches up with the optimization backlog and all new compilation requests are started

within 2 seconds of being put on the compilation queue. The TCOB is the measurement,

for each individual JVM, of how long it took from the start of the compilation activity to

when the optimization backlog is cleared.

To find the right amount of vCores to provision for a job, first determine an acceptable

TCOB for your application. Different applications find different TCOBs acceptable

depending on how many optimizations the program requests and how quickly you need

to warm it up. As a starting point, set the amount of time you want to wait before the

application is ready to accept requests as your target TCOB.

Perform a test run of a single JVM against your Cloud Native Compiler. In Grafana,

check the Time to Clear Optimization Backlog and Compilations in Progress graphs.

Sizing and Scaling your Optimizer Hub Installation

58

• If the maximum TCOB during your application’s warmup is lower than your target, you

can scale down the number of vCores provisioned for the job.

• If the maximum TCOB is higher than your target, check the Compilations in Progress

metric in Grafana. This metric shows you actual compilations in progress versus

Cloud Native Compiler capacity. If you are using the full capacity, add more vCores to

the capacity.

You should also check the client JVM logs to see whether the JVM fallback-to-local-jit-

compilation. JVMs switch to local compilation when Cloud Native Compiler becomes

unresponsive or tells the JVM that it cannot handle any new requests. You can also see

the number of local fallbacks in the Grafana dashboard.

Sizing and Scaling your Optimizer Hub Installation

59

Configuring Capacity

Depending on your autoscaling settings, there are three variables you need to set:

simpleSizing:
 vCores: 32
 minVCores: 32
 maxVCores: 106

• vCores - Total number of vCores that are allocated. This does NOT include

resources required by monitoring, if you enable it. The minimum amount of vCores

for provisioning Cloud Native Compiler is 29.

• minVCores - The minimum amount of resources that are always allocated when

autoscaling is enabled.

• maxVCores - The maximum amount of resources that are allocated when

autoscaling is enabled.

Configuring Autoscaling

Autoscaling is enabled by default in the Helm chart. To disable autoscaling, add the

Sizing and Scaling your Optimizer Hub Installation

60

following to values-override.yaml :

autoscaler: false

If you use the Azul-provided "cluster config file", the pre-defined node groups for the

gateway , compile-broker and cache components already contain instructions to

work with Autoscaler. If the Autoscaler Node sees any unused nodes, it deletes them. If

a replication controller, deployment, or replica set tries to start a container and cannot

do it due to lack of resources, the Autoscaler Node knows which service is needed and

adds this service to the Kubernetes cluster. For more information, see

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/.

In order to use HPA autoscaling, you need install the Metrics Server component in

Kubernetes.

JVM Connections to Optimizer Hub

Connecting a JVM to Optimizer Hub

Whether you are using an Optimizer Hub instance to provide compilations, ReadyNow

profiles, or both, the first step is creating a connection between the JVM and the

Optimizer Hub instance. Ask your Optimizer Hub instance admin for the "host address

and port of the Optimizer Hub host" and enter it in the -XX:OptHubHost=host:port

JVM parameter flag.

Establishing a connection to Optimizer Hub does not force the JVM to fetch

compilations from Optimizer Hub and not perform compilations locally by default. See

the configuration flags on "Using the Cloud Native Compiler".

NOTE

In some cases, you may also need to enter an additional

-XX:CNCEngineUploadAddress=host:port flag. Ask your

Optimizer Hub service admin if this is needed.

JVM Connections to Optimizer Hub

61

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/#metrics-server

Using the Cloud Native Compiler

You configure an Azul Zulu Prime Build of OpenJDK (Azul Zulu Prime JVM) to request

compilations from Cloud Native Compiler by specifying the IP address of the service

along with other command-line options. If the Cloud Native Compiler cannot respond to

the compilation requests in time, the Azul Zulu Prime JVM switches to local JIT

compilation until the service recovers.

Cloud Native Compiler JVM Options

NOTE

The minimum JVM options to request compilations from Cloud Native

Compiler are -XX:OptHubHost={host:port} and

-XX:+CNCEnableRemoteCompiler .

Command Line Option Description Default

-XX:OptHubHost={host:port} Address where Optimizer Hub is

listening. The default is

localhost:50051 . See

"Configuring Optimizer Hub Host

and Port" for instructions on

determining the correct host and

port.

-XX:[+/-]CNCEnableRemoteCompiler Allows usage of the remote

compiler when Cloud Native

Compiler has established a

connection.

false

-XX:CNCEngineUploadAddress={host:po

rt}

Address to upload the compiler

engine. Only needed when your

Optimizer Hub has non-standard

ports. See custom-port.

Using the Cloud Native Compiler

62

Command Line Option Description Default

-XX:[+/-]CNCAbortOnBadChannel With this flag, the JVM crashes if

it loses connection with a Cloud

Native Compiler.

false

-XX:[+/-]OptHubUseSSL Instructs the Azul Zulu Prime

JVM to communicate directly

with Optimizer Hub without using

SSL. Use this option if you

installed Optimizer Hub without

SSL.

true

-XX:OptHubSSLRootsPath={path to

cert.pem}

Instructs the Azul Zulu Prime

JVM to use and trust a specified

SSL certificate on the filesystem.

-Xlog:[+/-]concomp Display messages describing

communication with Optimizer

Hub.

false

Fallback to Local JIT Compilation

When you connect an Azul Zulu Prime JVM to a Cloud Native Compiler, the JVM

attempts to fetch all JIT compilations from the service. If the Cloud Native Compiler

cannot meet the JVM’s requests in time, the JVM automatically falls back to performing

optimizations on the client. Factors that can cause a Cloud Native Compiler to not meet

optimization demand include:

• The service does not have the corresponding "Compiler Engine" installed. To force an

Azul Zulu Prime JVM to fail when requesting optimizations from a Cloud Native

Compiler that doesn’t have the corresponding Compiler Engine installed, use the

-XX:+CNCAbortOnBadChannel flag.

Using the Cloud Native Compiler

63

• The service is down or cannot be reached.

• The service does not have enough capacity to meet the optimization requests. If you

have autoscaling enabled, this is often a temporary problem as new resources come

online. See "Sizing and Scaling your Optimizer Hub Installation" for more info.

When an Azul Zulu Prime JVM switches to local JIT compilation, it keeps checking

whether Cloud Native Compiler is ready to perform optimizations. Once Cloud Native

Compilation is back online and healthy, the Azul Platform Prime JVM switches back to

requesting optimizations from the service.

The following output in the JVM concomp log show when fallback to local JIT

compilation is enabled and disabled:

[110,991s][info][concomp] [LocalFallback] local compilation queue
disabled
[111,018s][info][concomp] [LocalFallback] local compilation queue
enabled

Logging and SSL

To view compiler info and ensure that the JVM is correctly connecting to Optimizer Hub,

use the -Xlog:concomp flag.

By default the Azul Zulu Prime JDK connects to Optimizer Hub using SSL. If you did not

enable SSL during Optimizer Hub deployment, you must use the -XX:-OptHubUseSSL

flag to instruct the Azul Zulu Prime JDK to connect without SSL.

If you attempt to connect to Optimizer Hub, running without SSL, and do not specify the

-XX:-OptHubUseSSL flag, you get the following error (visible with the

-Xlog:concomp flag):

E1011 13:16:23.198074100 29 ssl_transport_security.cc:1446]
Handshake failed with fatal error SSL_ERROR_SSL: error:1408F10B:SSL
routines:ssl3_get_record:wrong version number.

Using the Cloud Native Compiler

64

Registering a New Compiler Engine in Cloud Native Compiler

Since different versions of Azul Zulu Prime JVMs may require different compiled code,

Optimizer Hub’s Cloud Native Compiler must be able to produce different versions of

compiled code simultaneously. You do not need to create a separate Optimizer Hub

instance for each application or different Java version.

Cloud Native Compiler does not have its own compiler - it is just server-side

infrastructure for running the JIT compiler that ships inside of Azul Zulu Prime Builds of

OpenJDK. This compiler is uploaded to Cloud Native Compiler from the JVM in the form

of a Compiler Engine.

Each version of Azul Zulu Prime JVM contains a signed Compiler Engine distributable.

The JVM auto-uploads any missing compiler engine on startup. Compiler Engines are

signed to prevent malicious versions of Compiler Engines from being installed.

If an Azul Zulu Prime JVM connects to a Cloud Native Compiler service that does not

have the corresponding Compiler Engine installed, the JVM automatically switches to

performing the optimizations on the client VM.

NOTE

Cloud Native Compiler does not keep any persistent record of compiler

engines. If a JVM requests compilations from Cloud Native Compiler that

does not have the corresponding compiler engine, the JVM switches to

local JIT compilation and starts auto-uploading the compiler engine for

future use.

Auto-Uploading Compiler Engines

For JVMs connecting to Cloud Native Compiler in the same Kubernetes cluster, or

connecting to Cloud Native Compiler that is fronted by an external load-balancer, auto-

uploading works with no additional configuration.

For JVMs connecting to Cloud Native Compiler in an external Kubernetes cluster with

no external load-balancer, pass the IP address and port of Cloud Native Compiler’s

gateway service in the --XX:CNCEngineUploadAddress flag. See "Connecting a

Registering a New Compiler Engine in Cloud Native Compiler

65

JVM to a Cloud Native Compiler" for how to get the IP address of the gateway service.

Make sure you use the port that is mapped to 8080 in the gateway service.

Inspecting the Installed Compiler Engines

Each Compiler Engine has a Compiler Engine ID. You can view all of the Compiler

Engines that are installed on a Cloud Native Compiler by calling the /compiler-

engines REST API on the gateway service’s 8080 port when calling from inside the

cluster or the external port that is mapped to 8080 when calling from outside the

cluster.

Using ReadyNow Orchestrator

Using ReadyNow involves two distinct phases:

• Recording a good profile log that accurately captures the usage pattern you want to

warm up. Recordings can be refined automatically through repetitive training cycles.

• Using the profile log as the input to newly started VMs.

Using the Optimizer Hub ReadyNow Orchestrator to record and serve profile logs,

greatly simplifies the operational use of ReadyNow.

• There is no need to configure any local storage for writing the profile log.

• ReadyNow Orchestrator handles recording multiple profile candidates from multiple

JVMs and promoting the best recorded profile log. You no longer need to manually

prepare a profile and then distribute it before rolling out new versions of your code.

Instead, you can generate the profile automatically in production as part of your fleet

restart.

• ReadyNow Orchestrator monitors the optimization profiles of an entire fleet of JVMs

rather than just one JVM, intelligently picking the best one.

Creating and Writing To a New Profile Name

You use ReadyNow Orchestrator by "creating a connection to the Optimizer Hub" and

specifying the criteria for reading and writing profile logs. All of the necessary options

Using ReadyNow Orchestrator

66

https://docs.azul.com/prime/Use-ReadyNow

can be specified as command-line arguments to the Java process at the time of

deployment.

The basic lifecycle of using ReadyNow profile logs is as follows:

• The JVM streams profile log output to ReadyNow Orchestrator, giving the output a

unique profile name.

• Based on basic criteria specified in the command-line arguments, the JVM

nominates the output profile log as a candidate for sharing with other JVMs.

• ReadyNow Orchestrator deals with candidate profile logs arriving from various JVMs

that use the same profile name.

• Whenever the service receives a request for a profile log with a given profile name, it

examines the candidates it has collected and serves up the best one. This can

change over time as ReadyNow Orchestrator receives new and more complete profile

log candidates.

• JVMs can request multiple generations of a profile log. Rather than starting with no

input profile log and recording its output log based on the regular JIT profiling

process, the JVM can take a profile log as the input and further refine the profiling

information, recording its experience as a new generation of that profile log. If you

need to minimize the chances of having any deoptimizations through the life of your

Java program, it is sometimes beneficial to record several generations. ReadyNow

Orchestrator always serves the newest generation for a profile name to JVMs. JVMs

can cap the number of generations that they write out to avoid developing the profile

forever.

ReadyNow Orchestrator JVM Options

The following options are available in Azul Prime when using ReadyNow Orchestrator

with Optimizer Hub:

Using ReadyNow Orchestrator

67

Command Line Option Description Default

-XX:OptHubHost={host:port} Address where Optimizer Hub is

listening. The default is

localhost:50051 . See "Connecting a

JVM to Optimizer Hub" for instructions

to determine the correct host and port.

null

-XX:+EnableRNO Enables ReadyNow read and write to

ReadyNow Orchestrator, using

ProfileName as the name for the

profile log.

-XX:ProfileName={profilePath} Name of the profile that the JVM

both reads from and writes to.

Use of this flag is equivalent to

using

-XX:ProfileLogIn={profil

ePath}

-XX:ProfileLogOut={profi

lePath} , and is the preferred

way to specify profile names

when different input and output

names are not needed. If prefixed

with opthub:// ,

{profilePath} is used as the

profile name in ReadyNow

Orchestrator. If not prefixed with

opthub:// , {profilePath} is

interpreted as a file path on the

JVM.

null

Using ReadyNow Orchestrator

68

Command Line Option Description Default

-XX:ProfileLogOut={profilePath} The ProfileLogOut enables Azul

Zulu Prime JVM to record

compilations from the current

run. {profilePath} is the

name of the profile that the JVM

reads as input to ReadyNow. If

prefixed with opthub:// ,

{profilePath} is used as the

profile name in ReadyNow

Orchestrator. If not prefixed with

opthub:// , {profilePath} is

interpreted as a file path on the

JVM.

NOTE

For local

ReadyNow you

often have to

specify different

names for

ProfileLogIn

and

ProfileLogOut .

But for ReadyNow

Orchestrator you

must only use

ProfileName .

null

Using ReadyNow Orchestrator

69

Command Line Option Description Default

-XX:ProfileLogIn={profilePath} The ProfileLogIn allows Azul Zulu

Prime JVM to base its decisions

on the information from a

previous run. The current

ProfileLogIn file information is

read in its entirety - before Azul

Zulu Prime JVM starts to create a

new ProfileLogOut log.

{profilePath} is the name of

the profile that the JVM reads as

input to ReadyNow. If prefixed

with opthub:// ,

{profilePath} is used as the

profile name in ReadyNow

Orchestrator. If not prefixed with

opthub:// , {profilePath} is

interpreted as a file path on the

JVM.

NOTE

For local

ReadyNow you

often have to

specify different

names for

ProfileLogIn

and

ProfileLogOut .

But for ReadyNow

Orchestrator you

must only use

ProfileName .

null

Using ReadyNow Orchestrator

70

Command Line Option Description Default

-XX:ProfileLogOutNominationMinSize Indicate to server that the

produced profile is eligible for

promotion after specified amount

of bytes recorded.

0 = any size eligible

-1 = never gets promoted

1M

-XX:ProfileLogOutNominationMinSizePe

rGeneration

Define minimum acceptable

amount of bytes per generation

which the profile size should

reach to become eligible for

promotion.

List of pair <generation>:<size>,

separated by , . For example:

0:1000000,1:10000000,2:2
5000000,3:50000000

For more information, check

"Understanding ReadyNow

Orchestrator Generations".

null

Using ReadyNow Orchestrator

71

Command Line Option Description Default

-XX:ProfileLogOutNominationMinTimeS

ec

When used with ReadyNow

Orchestrator, the minimum time,

in seconds, a profile must record

before ReadyNow Orchestrator

can nominate it as a candidate.

0 = any duration eligible

-1 = never gets promoted

120

-XX:ProfileLogOutNominationMinTimeS

ecPerGeneration

When used with ReadyNow

Orchestrator, the minimum time,

in seconds, per generation during

which the profile should be

recorded in order to become

eligible for promotion.

List of pair

<generation>:<duration>,

separated by , . For example:

0:100,2:150

For more information, check

"Understanding ReadyNow

Orchestrator Generations".

null

Using ReadyNow Orchestrator

72

Command Line Option Description Default

-XX:ProfileLogOutMaxNominatedGenera

tionCount

When used with ReadyNow

Orchestrator, specifies the

maximum generation of a profile

that a VM nominates. This JVM

command line parameter

overrides the serverside default

to configure ReadyNow

Orchestrator.

0 = unlimited

For more information, check

"Understanding ReadyNow

Orchestrator Generations".

0

Using ReadyNow Orchestrator

73

Command Line Option Description Default

-XX:ProfileLogMaxSize={value in bytes} Specifies the maximum size that

a ReadyNow profile log is

allowed to reach. Profiles get

truncated at this size, regardless

of whether the application has

actually been completely warmed

up.

This JVM command line

parameter overrides the

serverside default to configure

ReadyNow Orchestrator.

It is recommended to either not

set this size explicitly, or set it

generously if required, for

example:

-XX:ProfileLogMaxSize=1G

0 = unlimited

0

Using ReadyNow Orchestrator

74

Command Line Option Description Default

-XX:ProfileLogTimeLimitSeconds={value

in seconds}

Instructs ReadyNow to stop

adding to the profile log after a

period of N seconds regardless

of where the application has

been completely warmed up. It is

recommended to either not set

this size explicitly, or set it

generously if required.

0 = unlimited

0

-XX:ProfileLogDumpInputToFile={name} Dumps input profile to the

specified path. For debugging

purposes only.

null

-XX:ProfileLogDumpOutputToFile={nam

e}

Dumps output profile to the

specified path. For debugging

purposes only.

null

-XX:RNOConnectionTimeoutMillis Timeout on establishing remote

connection and timeout on

interval between downloading

two chunks. Specified in

milliseconds.

5000

Using ReadyNow Orchestrator

75

Command Line Option Description Default

-XX:RNOProfileFallbackInput Experimental feature. Local

filesystem path which gets used

in case no profile data is

downloaded. E.g., in case of a

missing connection or the

requested profile name doesn’t

exist on the server.

null

-XX:ProfileLogOutVerbose Enables logging of verbose,

optional tracing information in

-XX:ProfileLogOut

true

Substitution Macros

The profile name is the central organizing attribute that ReadyNow Orchestrator uses to

group together profile logs. ReadyNow Orchestrator regards all candidates it receives

that contain the same profile name as being for the same application, with no further

knowledge of what code was actually runs. This poses the danger of accidentally using

the same profile name for two different applications. For example, if a user copies and

pastes the command-line arguments, including the profile name, from a production

application and uses it to run HelloWorld, the HelloWorld profile could, in some cases,

replace your valid production application profile.

To avoid this danger, you can use substitution macros in your profile name to limit the

likelihood of profile name clashes between different applications. Each macro unfolds

to a 4-byte hash string taken from a particular plain-text string corresponding to a

property:

Macro Description

%classpathhash Hashed user-defined Java class path string

Using ReadyNow Orchestrator

76

Macro Description

%vmargshash Hashed JVM arguments string

%vmflagshash Hashed JVM flags string

%cmdlinehash Hashed string containing all plain-text values from above macros. Input

values are concatenated to one string: Java class path string + JVM

arguments string + JVM flags string. Afterwards, 4-bytes hash is applied to

concatenated result.

%jdkver Hashed JDK version number converted to string

%jvmver Hashed JVM version number converted to string

%prop={PROPERTY}

%

Substition macro defining the profile log name. This gets

replaced with the value of the corresponding Java system

property. Provide these properties to the JVM on startup with

-Dprop=value .

For example:

-Dmyprofilename=test-profileout \
 -XX:ProfileLogOut=opthub://%prop=myprofilename%

Using a Previous Profile as the Basis of a New Profile Recording

When you’re deploying version 3 of MyApp, you often have a valid profile for version 2.

In most cases, you change a small portion of your code between versions and most of

the previous profile is still valid for your new version. When you feed in the previous

version of the profile as input to recording the new version of the profile, you can in

most cases eliminate the need to do multiple training iterations.

Using our above example, perform one run of the full ten minutes in a canary with the

following settings:

Using ReadyNow Orchestrator

77

java -XX:OptHubHost={host:port} \
 -XX:+EnableRNO \
 -XX:ProfileLogIn=opthub://MyApp-v2 \
 -XX:ProfileLogOut=opthub://MyApp-v3 \
 -XX:ProfileLogTimeLimitSeconds=600 \
 -XX:ProfileLogOutMaxNominatedGenerationCount=1 \
 -jar myapp.jar

To restart the rest of your fleet with the following settings:

java -XX:OptHubHost={host:port} \
 -XX:+EnableRNO \
 -XX:ProfileName=opthub://MyApp-v3 \
 -XX:ProfileLogTimeLimitSeconds=600 \
 -XX:ProfileLogOutMaxNominatedGenerationCount=1 \
 -jar myapp.jar

Understanding ReadyNow Orchestrator Generations

When using ReadyNow, you get the best results if you perform several training runs of

your application to generate an optimal profile. For example, to generate a good profile

for an application instance called MyApp-v1.5, you perform three training runs of your

application to record three generations of the ReadyNow profile log. For each training

run, you read in the generation recorded by the last training run as the input profile for

the current training run.

Understanding ReadyNow Orchestrator Generations

78

You want to make sure that the output of each training run meets minimum criteria to

be promoted as the input for the next level. These promotion criteria can be:

• The duration (time) of the training run

• The size of the candidate profile log

The ReadyNow Orchestrator feature in Optimizer Hub automatically takes care of

creating a promoted profile as you run your application. Users specify the promotion

criteria for each version of their application and a unique ProfileName as Java

command line parameters. Administrators can also specify server-side global

promotion criteria that must also be met. When deploying a new version of an

application, ReadyNow Orchestrator automatically collects candidates from many JVMs

running the same ProfileName and performs the training runs to generate the best

promoted profile.

Configuring Generations

ReadyNow Orchestrator allows you to set different minimum size and recording

durations for different generations of your profiles. Often you want to promote the first

generation of your profile as quickly as possible so new JVMs are not starting with

nothing, but you want your second generation to record for a longer time before

promotion, so it is more complete.

You can use configuration settings for both readynow-orchestrator-defaults itself and

the readynow-orchestrator-jvm-options to change this behavior if the default values

don’t deliver the desired result.

Basic Profile Recording with Default Generations

In its most basic form, you let the defaults do all the work. By default, ReadyNow

Orchestrator nominates profile logs after three full generations and doesn’t place a limit

on log size. Suppose you want to record a new profile while deploying code to a fleet

running in production. Run with the following options:

Understanding ReadyNow Orchestrator Generations

79

java -XX:OptHubHost={host:port} \
 -XX:+EnableRNO \
 -XX:ProfileName=opthub://MyApp-v3 \
 -jar myapp.jar

In this case, all JVMs nominate their logs based on the defaults (e.g. 2 minutes for the

first generation, 10 minutes for the second generation, 120 minutes for the third

generation) and keep recording until the JVM shuts down. For best results, do a test run

in a canary instance for at least two minutes and if possible a full ten minutes. This

creates generation 1 of your profile. Then restart your fleet as normal. As JVMs start up,

they receive a profile from ReadyNow Orchestrator and check the generation number. If

that number is less than the server-side default maximum of 3, the JVM writes out the

next generation of the profile. Once there is a valid generation 3 of the profile on

ReadyNow Orchestrator, none of the JVMs write any more output.

You can overrule the server-side defaults, by providing extra options, for example:

java -XX:OptHubHost={host:port} \
 -XX:+EnableRNO \
 -XX:ProfileName=opthub://MyApp-v3 \
 -XX:ProfileLogOutNominationMinSizePerGeneration=0:1000000
\,1:10000000\,2:25000000\,3:50000000 \
 -XX:ProfileLogOutNominationMinTimeSec=0:PT2M\,1:PT15M\,2:PT30M
\,3:PT60M \
 -jar myapp.jar

Capping Profile Log Recording and Maximum Generations

We can make our example above more complex:

• After 10 minutes you want to stop recording.

• You want to record two generations of the profile.

Start your JVM with the following parameters:

Understanding ReadyNow Orchestrator Generations

80

java -XX:OptHubHost={host:port} \
 -XX:+EnableRNO \
 -XX:ProfileName=opthub://MyApp-v3 \
 -XX:ProfileLogTimeLimitSeconds=600 \
 -XX:ProfileLogOutMaxNominatedGenerationCount=2 \
 -jar myapp.jar

Priority of Generation Settings

Please take the default values into account when you define your own generation

settings as these can be overruled by other default settings. Let’s look at an example:

• You define -XX:ProfileLogOutNominationMinTimeSec=900 , but don’t change

other settings.

• The server-side default for the promotion of different generations, specifies the

following default 0:PT2M\,1:PT15M\,2:PT30M\,3:PT60M for

readyNowOrchestrator.promotion.minProfileDurationPerGeneration .

• As a result, the 2nd and 3rd generation aren’t promoted after 900 seconds, but after

30 and 60 minutes as specified in the defaults.

When you want to overrule the default settings, make sure to specify all appropriate

options.

Detailed Information

Optimizer Hub API

Optimizer Hub provides an administration API with the following methods.

ReadyNow Orchestrator Admin API

These methods are available on

{MANAGEMENT_GATEWAY_IP}:{SERVICE_PORT}/rno/… and can be accessed

without authentication. The service port typically is 8080, but can be different based on

the used configuration. For security reasons, by default, the API is not exposed outside

the cluster.

Detailed Information

81

Configure the API Endpoint

Apply the required changes in this section of the cluster configuration.

gateway:
 service:
 type: "NodePort"
 httpEndpoint:
 enabled: false
 port: 8080

Overview of the API Methods

Method Url Description

GET /rno/names Returns a list of all profile names with summary

information.

The request can optionally be extended with a

date range filter (from , to) in the format YYYY-

MM-DD . For example: from=2024-04-

18&to=2024-04-23 . Both these parameters

are optional, so you can filter profiles by only one

of them.

The data is returned as a JSON array of profile

names in the following example format:

{
 "name": "name-of-profile",
 "numberOfProfiles": 1,
 "numberOfChunks": 88,
 "totalDiskSize": 17273029,
 "lastAccess": "2024-04-
18T16:06:27.842Z",
 "cncEnabled": true
}

You can use the value provided in name to

retrieve more info with the following APIs.

Optimizer Hub API

82

Method Url Description

GET /rno/names/{name} Returns summary information for the requested

profile name.

DELETE /rno/names/{name} Deletes given profile name and all profiles

belonging to it.

GET /rno/names/{name}/profiles Returns summary information for all of the

profiles within a given profile name. Use the

?status=promoted query parameter to see

only the promoted profile.

GET /rno/names/{name}/profiles

/{Id}

Returns summary information for a specific

profile.

DELETE /rno/names/{name}/profiles

/{Id}

Deletes a specific profile.

Optimizer Hub API

83

Method Url Description

GET /rno/names/{name}/export Exports all of the profiles in a specific profile

name. Each profile’s directory has the Id of the

VM that created it. The promoted profile,

meaning the profile that PLS sends to new

clients requesting the profile name, is stored in

profilePromoted.json . The README has

instructions for unifying the profile chunks into a

single profile file that can be used as a local

input to ReadyNow. You can see the iteration of

a given profile in the profileIteration property in

the profile’s profileInfo.json file.

NOTE

The profile export fails if the

resulting data stream is larger

than 2GB. If this happens,

consider just exporting the

promoted profile using the

?status=promoted query

parameter.

Optimizer Hub API

84

Method Url Description

POST /rno/names/{name}/import Imports a profile log to this instance of

Optimizer Hub. This API is mostly used for

moving a promoted profile from one Optimizer

Hub instance to another. The uploaded file

should be a zip archive in the format produced

by the /profile/export API. Do not rename

directories in the profile structure or edit the

profile metadata.

NOTE
If the profile name already exists,

the import fails.

GET /rno/profiles/{id}/content Returns a profile by the specified id. You can use

the returned profile as an input for Prime JVM

for the ReadyNow ProfileLogIn flag value.

For example:

curl {endpoint}:{port}/rno/profiles/
{id}/content > {RETURNED_PROFILE}

-XX:ProfileLogIn={RETURNED_PROFILE}

GET /rno/statistics Returns service-wide statistics for this instance

of Cloud Native Compiler.

Monitoring Optimizer Hub

You can monitor your Optimizer Hub using the standard Kubernetes monitoring tools

(Prometheus and Grafana) and through log files.

Monitoring Optimizer Hub

85

Using Prometheus and Grafana

The Optimizer Hub components are already configured to expose key metrics for

scraping by Prometheus. Follow "Configuring Prometheus and Grafana" to set up these

monitoring tools and check "Using the Grafana Dashboard" for more info about the

different sections of the dashboard.

Retrieving Optimizer Hub Logs

All Optimizer Hub components, including third-party ones, log some information to

stdout . These logs are very important for diagnosing problems.

You can extract individual logs with the following command:

kubectl -n my-opthub logs {pod}

However by default Kubernetes keeps only the last 10 MB of logs for every container,

which means that in a cluster under load the important diagnostic information can be

quickly overwritten by subsequent logs.

You should configure log aggregation from all Optimizer Hub components, so that logs

are moved to some persistent storage and then extracted when some issue needs to be

analyzed. You can use any log aggregation One suggested way is to use Loki. You can

query the Loki logs using the logcli tool.

Here are some common commands you can run to retrieve logs:

• Find out host and port where Loki is listening

export LOKI_ADDR=http://{ip-adress}:{port}

• Get logs of all pods in the selected namespace

logcli query --since 24h --forward --limit=10000 '{namespace="zvm-
dev-3606"}'

Monitoring Optimizer Hub

86

https://grafana.com/oss/loki/
https://grafana.com/docs/loki/latest/getting-started/logcli/

• Get logs of a single application in the selected namespace

logcli query --since 24h --forward --limit=10000 '{namespace="zvm-
dev-3606" app="compile-broker"}'

• Get logs of a single pod in the selected namespace

logcli query --since 24h --forward --limit=10000 '{namespace="zvm-
dev-3606",pod="compile-broker-5fd956f44f-d5hb2"}'

Extracting Compilation Artifacts

Optimizer Hub uploads compiler engine logs to the blob storage. By default, only logs

from failed compilations are uploaded.

You can retrieve the logs from your blob storage, which uses the directory structure

<compilationId>/<artifactName> . The <compilationId> starts with the VM-

Id which you can find in connected-compiler-%p.log :

Log command-line option
-Xlog:concomp=info:file=connected-compiler-%p.log::filesize
=500M:filecount=20

Example:
[0.647s][info][concomp] [ConnectedCompiler] received new VM-Id:
4f762530-8389-4ae9-b64a-69b1adacccf2

Note About gw-proxy Metrics

The gw-proxy component in Optimizer Hub uses, by default, /stats/prometheus as

target HTTP endpoint to provide metrics. Most other Optimizer Hub components use

/q/metrics . If you make manual changes in the configuration of the metrics for

individual Kubernetes Deployments in the Optimizer Hub installation, make sure that you

don’t use the /q/metrics for the gw-proxy deployment. Doing so would lead to

confusion when metrics are processed.

Monitoring Optimizer Hub

87

Using the Grafana Dashboard

A Grafana dashboard is available after it has been "configured", to understand how your

Optimizer Hub instance is performing. This dashboard is divided into several sections.

The most important sections from user-perspective are described here. The other

sections are more oriented towards maintaining and troubleshooting of the installation.

Overview

Provides a high-level view of the Optimizer Hub instance:

• The number of running Optimizer Hub components.

• The number of connected JVMs, with basic overview (in local fallback, backlogged,…)

• Basic metrics about compilations, with "Time to clear optimization backlog" as the

most important value to monitor.

Using the Grafana Dashboard

88

Alerts

Basic monitoring of problems in the Optimizer Hub cluster.

Cloud Native Compiler

Monitoring of the Cloud Native Compiler feature. This is applicable for JVMs using the

Cloud Native Compiler.

Using the Grafana Dashboard

89

ReadyNow Orchestrator

Monitoring of the ReadyNow Orchestrator feature. This is applicable for JVMs using

Using the Grafana Dashboard

90

Optimizer Hub ReadyNow Orchestrator.

Profile Synchronization

Applicable when you have multiple Optimizer Hub clusters and profiles are synchronized

between them. This section provides the following info:

• Profile sync latency

• Profile sync rate: speed of value changes of the metric

• Profile sync tasks finished

• Synced bytes total: sum of the synced bytes

• Sync task duration: the duration of each task

• Number of synced profiles rate

Using the Grafana Dashboard

91

Troubleshooting Optimizer Hub

This page shows how to troubleshoot a misbehaving Optimizer Hub and any Azul Zulu

Prime Builds of OpenJDK (Azul Zulu Prime JVM) instances using Optimizer Hub.

Client VM Troubleshooting

My application running in a Cloud Native Compiler-enabled VM shows worse

performance than usually. What can I do?

1. Double-check VM arguments. Ensure that VM is started with -XX:OptHubHost=

parameter pointing to the address of the Optimizer Hub gateway.

See "Connecting a JVM to a Cloud Native Compiler" for more details on Optimizer

Hub-related VM parameters and "Installing Optimizer Hub" for finding out the

gateway address.

2. Enable Optimizer Hub logging in VM using -Xlog:concomp parameter and look for

log messages that show the JVM connecting to and disconnecting from Optimizer

Hub.

◦ If the log says that the VM fails to connect to the service, check that the service is

up and running, check the network connectivity between JVM and service, and

check the value of -XX:OptHubHost= .

◦ If the log says that VM disconnects from the service soon after connecting, the log

Troubleshooting Optimizer Hub

92

should also give the reason for disconnecting. The most frequent reason for such

disconnects is a missing Compiler Engine on the service, indicated by the

FAILED_PRECONDITION error code and message Compiler engine … not

found . See "Registering a New Compiler Engine" for more information.

◦ If the connection between the VM and service is established and does not break,

then proceed to item #3.

3. Collect VM GC log, open it in GCLA and see top-tier compilation statistics. Top-tier

compilation stats can also be seen in VM compilation log (

-XX:+PrintCompilation).

◦ If stats show high top-tier compilation failure ratio, then it’s time to troubleshoot

Cloud Native Compiler.

◦ Write down the VM ID seen in the VM concomp log, it can be used to filter service

events related to this particular VM.

You can find the VM ID in connected-compiler-%p.log :

Log command-line option
-Xlog:concomp=info:file=connected-compiler-%p.log::filesize
=500M:filecount=20

Example:
[0.647s][info][concomp] [ConnectedCompiler] received new VM-Id:
4f762530-8389-4ae9-b64a-69b1adacccf2

◦ Proceed to Cloud Native Compiler Server Troubleshooting.

4. Use the TTCOB metric to research possible problems.

An overloaded client (the JVM) can cause worse performance of Cloud Native

Compiler. This could be seen as a too high TTCOB metric. One example of such

overload is CPU saturation on JVM side. This can cause smaller amounts of

compilations being sent to Cloud Native Compiler but also a worse performance of

Cloud Native Compiler compilation because an overloaded JVM affects the

communication between the CNC Compiler and JVM itself.

Troubleshooting Optimizer Hub

93

#cloud_native_compiler_troubleshooting

◦ If TTCOB is over the threshold:

▪ Look at the "Compilations in progress" chart.

▪ If "Compilations" value hits the capacity, then the server is the bottleneck and

should be scaled.

▪ Otherwise the bottleneck is related to the per-VM limit on concurrent

compilations. It should be increased. Scaling server without increasing that per-

VM limit doesn’t help.

◦ If TTCOB is below threshold:

▪ How much below threshold is it?

▪ If there is a gap between the actual TTCOB and the threshold, then Optimizer

Hub can be downscaled proportionally to the gap.

▪ Otherwise relax and don’t touch anything.

5. If scaling compile-brokers doesn’t improve TTCOB, the culprit may be the cache.

A typical symptom is cache CPU usage hitting the ceiling, depending on the

workload. An example can be seen in this graph:

If that’s the case, one can modify simple sizing relationships to have more caches.

This is the relevant section in the values.yaml:

Troubleshooting Optimizer Hub

94

simpleSizing:
 relationships:
 brokersPerGateway: 30
 brokersPerCache: 20

Settings brokersPerCache to a lower value (e.g. 15) results in having more cache

instances relative to compile-brokers.

I see occasional "compiler timeout" errors in service logs and/or grafana dashboard.

What’s that?

Every compilation on Cloud Native Compiler has a time limit. By default it’s 500

seconds.

• If that limit is exceeded, the first thing to check is network latency between VM and

Cloud Native Compiler using ping {opthub_host} . Latency should not exceed

single-digit milliseconds. If the latency is higher, CNC can’t deliver its best

performance. Make sure to locate VMs close enough to CNC.

• You can use the "VM rountrip" widget in the Grafana dashboard to detect if this limit

is exceeded.

• In rare cases there are very large compilations that actually require that long. If that’s

the case, compilation timeout can be changed by adding

-Dcompiler.timeout={N} flag to compile-broker, where {N} is the number in

seconds.

My application running in a Optimizer Hub-enabled VM behaves incorrectly or crashes.

What can I do?

1. Collect all VM logs and the hs_err* file and send it to Azul for analysis.

2. Run the application without the -XX:OptHubHost flag to verify that the problem is

specific to connecting to Optimizer Hub.

I sometimes see entries about failed compilations because of "ConnectedCompiler is

not yet ready", but I see it is compiling fine. Is that ok?

Troubleshooting Optimizer Hub

95

This may happen when running with SSL enabled. The VM keeps an open connection to

the service, but sometimes the connection can be reset or re-established. It may happen

that the VM tries to send a compilation request in the very moment. With SSL, the VM

and the service need to do a handshake to make sure the connection is trusted. It is

very quick, but it is possible the VM hits this small window. It is harmless as the

compilation is resubmitted the next moment.

Cloud Native Compiler Troubleshooting

JVM compilation log shows that top-tier compilations are started, but never finished.

What can I do?

This can be caused by one of these reasons:

• No compile-broker pods are running in the Optimizer Hub cluster. Make sure that at

least one compile-broker is up and running.

• Cloud Native Compiler has too many compilation requests enqueued due to too

many VMs connected and it takes too long to provide compiled code. To confirm,

check the "Compilation Queues" chart in Grafana. Increase the number of compile-

broker replicas.

I see occasional "vm unreachable" in service logs and/or grafana dashboard. What’s

that?

This is caused by the service’s inability to receive some information necessary for the

compilation from the JVM. It usually happens when the JVM disconnects from the

service for any reason, e.g. JVM termination or a network error. It’s harmless. The

service just skips the compilation and proceeds to the next one.

ReadyNow Orchestrator Troubleshooting

ReadyNow profile reading timed-out with pre-main exceeding 60 seconds.

In case of a service misconfiguration with the Optimizer Hub not being deployed, and

compilation.limit.per.vm setting being set to a value higher than 0 , Prime may

Troubleshooting Optimizer Hub

96

attempt to use the service for compilations to no avail. It might take some time for

Prime to automatically switch to the local Falcon compiler. This can severely impact the

ability of ReadyNow to pre-compile methods before the application load is started thus

limiting the overall effect of ReadyNow.

Known Issues

• VM crashes when there is not enough memory available on the system. The exact

amount of memory needed depends on the environment and the application. If you

see VM crashing, please try freeing memory (e.g. killing some memory-hungry

processes) or moving to a machine with more memory.

Troubleshooting Optimizer Hub

97

	Optimizer Hub Documentation
	Table of Contents
	About Optimizer Hub
	Interaction Between Optimizer Hub and JVMs
	About Cloud Native Compiler
	JIT Optimization
	Falcon JIT

	About ReadyNow Orchestrator
	Key Strengths of ReadyNow Orchestrator

	Optimizer Hub Architecture Overview
	Architecture Overview
	Deployment Overview

	Optimizer Hub Release Notes
	Optimizer Hub 1.9.4
	New Features
	Bug Fixes
	Known Issue

	Optimizer Hub 1.9.3
	New Features
	Bug Fixes
	Known Issue

	Optimizer Hub 1.9.2
	New Features
	Known Issue

	Optimizer Hub 1.9.1
	New Features

	Optimizer Hub 1.9.0
	New Features
	Bug Fixes

	Optimizer Hub 1.8.2
	New Features

	Optimizer Hub 1.8.1
	New Features
	Known Issues

	Optimizer Hub 1.8.0
	New Features
	Known Issues

	Cloud Native Compiler 1.7.1
	New Features

	Cloud Native Compiler 1.7.0
	New Features

	Cloud Native Compiler 1.6.3
	New Feature

	Cloud Native Compiler 1.6.2
	New Features
	Upgrade

	Cloud Native Compiler 1.6.1
	New Features
	Bug Fixes
	Known Issues

	Cloud Native Compiler 1.6.0
	New Features
	Bug Fixes
	Known Issues

	Cloud Native Compiler 1.5.0
	New Features
	Known Issues

	Cloud Native Compiler 1.4.0
	New Features
	Known Issues

	Cloud Native Compiler 1.3.0
	New Features
	Known Issues

	Cloud Native Compiler 1.2.0
	New Features

	Cloud Native Compiler 1.1.0
	New Features
	Known Issues

	Cloud Native Compiler 1.0.0
	New Features

	Azul Platform Core Third Party Licenses
	Optimizer Hub Installation Instructions
	Installing Optimizer Hub
	Supported Platforms
	Supported Kubernetes Environments

	Installing Optimizer Hub on Kubernetes
	Optimizer Hub Helm Charts
	Installing Optimizer Hub
	Configuring Persistent Storage
	Enabling the Management Gateway
	Cleaning Up

	Installing Optimizer Hub on AWS Elastic Kubernetes Service
	Provisioning on EKS
	Setting Up an External Load Balancer
	Installing Optimizer Hub on EKS
	Configuring AWS S3 Storage
	Cleaning Up

	Installing Optimizer Hub on Microsoft Azure
	Configuring Azure Blob Storage

	Installing Optimizer Hub on Google Cloud
	Configuring Storage
	Configuring Compile Broker
	Configuring Gateway
	Configuring Cache

	Installing Optimizer Hub on Minikube
	Installing Minikube
	Installing Optimizer Hub
	Uninstalling Optimizer Hub from Minikube

	Upgrading Optimizer Hub
	Changed Values in 1.8
	Upgrade From Specific Versions

	Configuring Optimizer Hub
	Optimizer Hub Generic Defaults
	Database Parameters
	Database Schema Parameters
	Management Gateway Parameters
	Cross-Region Sync Parameters
	Simple Sizing Parameters
	SSL Parameters
	Storage Parameters

	Configuring the Active Optimizer Hub Services
	Install Only ReadyNow Orchestrator
	Disabling Cloud Native Compiler on a Full Optimizer Hub Installation
	Enabling the Management Gateway

	Configuring Optimizer Hub Host and Port
	Determining the Optimizer Hub Endpoint
	Specifying a Custom Compiler Engine Upload Port

	Configuring gRPC Proxy
	Disabling Envoy in Optimizer Hub
	Useful links

	Configuring Optimizer Hub with SSL Authentication
	Running Azul Zulu Prime JDK Clients with SSL

	Configuring ReadyNow Orchestrator
	Duration Configuration
	Configuring Clean Up of Old Profile Logs
	Configuring Cross-Region Synchronization of Profiles
	ReadyNow Orchestrator Defaults

	Configuring Prometheus and Grafana
	Prometheus Configuration Instructions
	Grafana Configuration Instructions

	Sizing and Scaling your Optimizer Hub Installation
	Scaling Overview
	Configuring Capacity
	Configuring Autoscaling

	JVM Connections to Optimizer Hub
	Connecting a JVM to Optimizer Hub
	Using the Cloud Native Compiler
	Cloud Native Compiler JVM Options
	Fallback to Local JIT Compilation
	Logging and SSL

	Registering a New Compiler Engine in Cloud Native Compiler
	Auto-Uploading Compiler Engines
	Inspecting the Installed Compiler Engines

	Using ReadyNow Orchestrator
	Creating and Writing To a New Profile Name
	ReadyNow Orchestrator JVM Options
	Using a Previous Profile as the Basis of a New Profile Recording

	Understanding ReadyNow Orchestrator Generations
	Configuring Generations
	Basic Profile Recording with Default Generations
	Capping Profile Log Recording and Maximum Generations
	Priority of Generation Settings

	Detailed Information
	Optimizer Hub API
	ReadyNow Orchestrator Admin API

	Monitoring Optimizer Hub
	Using Prometheus and Grafana
	Retrieving Optimizer Hub Logs
	Extracting Compilation Artifacts
	Note About gw-proxy Metrics

	Using the Grafana Dashboard
	Overview
	Alerts
	Cloud Native Compiler
	ReadyNow Orchestrator
	Profile Synchronization

	Troubleshooting Optimizer Hub
	Client VM Troubleshooting
	Cloud Native Compiler Troubleshooting
	ReadyNow Orchestrator Troubleshooting
	Known Issues

